The inhibitory effect of α-methyl-5-HT on ATP-activated currents in rat dorsal root ganglion neurons
Abstract The purpose of this study was to explore the inhibitory effect of α-methyl-5- hydroxytryptamine (α-methyl-5-HT) on ATP-activated current (IATP) in rat dorsal root ganglion (DRG) neurons. Whole-cell patch clamp experiment was performed on cultured rat DRG neurons. One minute after treatment...
Gespeichert in:
Veröffentlicht in: | Ciência e tecnologia de alimentos 2022-01, Vol.42 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract The purpose of this study was to explore the inhibitory effect of α-methyl-5- hydroxytryptamine (α-methyl-5-HT) on ATP-activated current (IATP) in rat dorsal root ganglion (DRG) neurons. Whole-cell patch clamp experiment was performed on cultured rat DRG neurons. One minute after treatment with α-methyl-5-HT, ATP (10-4 mol/L) activation current in rat DRG neurons was inhibited. However, this inhibitory effect was independent of the current caused by α-methyl-5-HT. The dose-response curve for IATP showed that α-methyl-5-HT significantly shifted it. The Kd values of ATP-activated currents before and after the pre-addition of α-methyl-5-HT were similar (4.23×10-5 mol/L vs. 6.81×10-5 mol/L). Furthermore, cyproheptadine (10-6 mol/L), an antagonist of 5-HT2 receptor, can reverse the inhibition of α-methyl-5-HT. After intracellular dialysis of KN93 (CaMKII inhibitor) and H7 (PKC inhibitor), this inhibition was also completely eliminated. In conclusion, our results showed that α-methyl-5-HT inhibited ATP-activated current through activating the 5-HT2 receptor and resulting in phosphorylation of the ATP receptor. It was caused by the activation of G protein coupled receptor and corresponding intracellular signaling transduction cascade. |
---|---|
ISSN: | 0101-2061 1678-457X 1678-457X |
DOI: | 10.1590/fst.35620 |