Comparison of multispectral modeling of physiochemical attributes of greengage: Brix and pH values

Abstract Chemometric modeling concerns both accuracy and computational expense for the prediction of quality-indicating attributes of food materials. Modeling approaches were explored with the hyperspectral images with pH and Brix values of greengages. A two-phase architecture was applied for modeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ciência e tecnologia de alimentos 2021, Vol.41 (suppl 2), p.611-618
Hauptverfasser: WANG, Xiwei, XING, Xiaoyang, ZHAO, Maocheng, YANG, Junrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Chemometric modeling concerns both accuracy and computational expense for the prediction of quality-indicating attributes of food materials. Modeling approaches were explored with the hyperspectral images with pH and Brix values of greengages. A two-phase architecture was applied for modeling. Firstly, waveband selection was performed using two approaches, i.e., succession projection algorithm (SPA) and its combination with genetic algorithm (SPA+GA). Secondly, multispectral models based on the two feature sets of wavebands were built via a total of six different modeling methods, i.e., partial least squares regression (PLSR) and extreme learning machine (ELM) in their respective stand-alone versions, their applications combined with genetic algorithm (GA), and their ensemble enhancements with modified Adaboost.RT (MAdaboost.RT). Analysis of accuracy and computational expense showed that supervised feature selection with SPA+GA was superior to unsupervised SPA for better modeling accuracy. MAdaboost.RT-ELM showed high accuracy at low computational expense. ELM models were the better base models than the PLSR ones, for being more randomized and diverse. It indicates that MAdaboost.RT-ELM on SPA is the best choice for a quick test on a newly available dataset, while switching the dimensionality reduction from SPA to SPA+GA may yield more accurate models with added, but well worthy, computational expense.
ISSN:0101-2061
1678-457X
1678-457X
DOI:10.1590/fst.21320