Operator-valued Fourier multipliers on toroidal Besov spaces
We prove in this paper that a sequence M: Zn → L(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustratio...
Gespeichert in:
Veröffentlicht in: | Revista colombiana de matemáticas 2016-01, Vol.50 (1), p.109-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove in this paper that a sequence M: Zn → L(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞ and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustration of the applicability of this results we study the solvability of two abstract Cauchy problems with periodic boundary conditions. |
---|---|
ISSN: | 0034-7426 2357-4100 |
DOI: | 10.15446/recolma.v50n1.62205 |