Effects of pupillary dilation on ocular optical biometry outcomes in pediatric patients

Pharmacological pupillary dilation is performed in comprehensive ophthalmological examinations and before biometric measurements. So far, there is no consensus regarding its impact on biometric measurements. This study's aim was to investigate the effects of pharmacological pupillary dilation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arquivos brasileiros de oftalmologia 2020-08, Vol.83 (4), p.289-293
1. Verfasser: Balsak, Selahattin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pharmacological pupillary dilation is performed in comprehensive ophthalmological examinations and before biometric measurements. So far, there is no consensus regarding its impact on biometric measurements. This study's aim was to investigate the effects of pharmacological pupillary dilation on ocular biometric measurements in healthy children. This was a prospective, observational, non-randomized study of children (4-18 years of age) who were admitted for routine ophthalmological examination. Biometric measurements were performed, using a non-contact optical biometry device, both before and after pharmacological pupillary dilation with cyclopentolate hydrochloride. Intraocular lens power calculations were performed using Hill-RBF, Barrett, Olsen, Sanders-Retzlaff-Kraff/Theoretical, Holladay, and Hoffer Q formulas. Descriptive statistical analyses were also performed. The Wilcoxon signed-rank test was used to compare measurements before and after pharmacological pupillary dilation. Relationships between variables were analyzed using the Spearman-Brown rank correlation coefficient. The study included 116 eyes of 58 children (mean age, 8.4 ± 0.32 years; 34 girls). Significant changes were observed after pupillary dilation, compared with before pupillary dilation, in terms of anterior chamber depth, aqueous depth, and central corneal and lens thicknesses. No significant change was observed in axial length. Intraocular lens power calculations revealed no significant changes after pupillary dilation in most formulas except for the Olsen formula. The intraocular lens power was significantly inversely correlated with axial length and anterior chamber depth. Pharmacological pupillary dilation in children appeared to have no impact on axial length and intraocular lens power, but caused a significant increase in anterior chamber depth. The difference in anterior chamber depth measurements before and after pupillary dilation could be related to the optical biometry device model used. These outcomes should be considered in intraocular lens power calculations performed using anterior chamber depth parameters.
ISSN:0004-2749
1678-2925
1678-2925
DOI:10.5935/0004-2749.20200041