Early stopping in clinical PET studies: How to reduce expense and exposure

Clinical positron emission tomography (PET) research is costly and entails exposing participants to radioactivity. Researchers should therefore aim to include just the number of subjects needed to fulfill the purpose of the study. In this tutorial we show how to apply sequential Bayes Factor testing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Cerebral Blood Flow & Metabolism 2021-11, Vol.41 (11), p.2805-2819, Article 0271678
Hauptverfasser: Svensson, Jonas E, Schain, Martin, Knudsen, Gitte M, Ogden, R Todd, Plavén-Sigray, Pontus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinical positron emission tomography (PET) research is costly and entails exposing participants to radioactivity. Researchers should therefore aim to include just the number of subjects needed to fulfill the purpose of the study. In this tutorial we show how to apply sequential Bayes Factor testing in order to stop the recruitment of subjects in a clinical PET study as soon as enough data have been collected to make a conclusion. By using simulations, we demonstrate that it is possible to stop a study early, while keeping the number of erroneous conclusions low. We then apply sequential Bayes Factor testing to a real PET data set and show that it is possible to obtain support in favor of an effect while simultaneously reducing the sample size with 30%. Using this procedure allows researchers to reduce expense and radioactivity exposure for a range of effect sizes relevant for PET research.
ISSN:0271-678X
1559-7016
1559-7016
DOI:10.1177/0271678X211017796