Preparation and properties of DNA/PLLA, whey protein/PLLA and collagen/PLLA composites
The poor flexibility, low toughness and thermal stability have restricted the applications of degradable poly(lactic acid) bioplastic. The introduction of deoxyribonucleic acid, whey protein or collagen with helical structures, which include numerous intermolecular hydrogen bonds, can produce change...
Gespeichert in:
Veröffentlicht in: | Plastics, rubber & composites rubber & composites, 2018-02, Vol.47 (2), p.87-93 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The poor flexibility, low toughness and thermal stability have restricted the applications of degradable poly(lactic acid) bioplastic. The introduction of deoxyribonucleic acid, whey protein or collagen with helical structures, which include numerous intermolecular hydrogen bonds, can produce changes in mechanical and thermal properties of poly(lactic acid) materials. Due to the presence of more -C = O and -NH groups with strong hydratability, different composites exhibited a higher heat resistance compared with the neat poly(l-lactic acid). Moreover, for collagen/poly(l-lactic acid) composites, the tensile strength and elongation at break were increased by 88.6 and 154.9% compared with the neat poly(l-lactic acid), respectively. The results provide a basis for the design of novel poly(lactic acid)-based composites and can expand the application areas of materials, including plastic films, taker-bags, textiles and so on. |
---|---|
ISSN: | 1465-8011 1743-2898 |
DOI: | 10.1080/14658011.2018.1426237 |