High-temperature microstructural evolution and quantification for alloys IN740 and IN740H: comparative study
In ultra-supercritical power plants, Ni-base alloys are candidate materials for long-term, high-temperature applications, operating at temperatures and pressures as high as 750°C and 35 MPa. Alloy IN740 and its modification, alloy IN740H, are considered for such applications. Their microstructural e...
Gespeichert in:
Veröffentlicht in: | Materials science and technology 2017-01, Vol.33 (1), p.40-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In ultra-supercritical power plants, Ni-base alloys are candidate materials for long-term, high-temperature applications, operating at temperatures and pressures as high as 750°C and 35 MPa. Alloy IN740 and its modification, alloy IN740H, are considered for such applications. Their microstructural evolution, at 750°C for times ranging between 3000 and 5000 hours, has been investigated by means of scanning electron microscopy, electron back-scattered diffraction, energy dispersive X-ray analysis and phase quantification. All phases were identified and quantified allowing comparison between the two microstructures, their evolution and stability. Particular attention was paid to γ′, η and G phases. The results are used within a broader investigation aimed at improving and further developing a predictive creep model based on continuous damage mechanics. |
---|---|
ISSN: | 0267-0836 1743-2847 |
DOI: | 10.1080/02670836.2016.1159002 |