コンピュータビジョンのための実践機械学習 ―モデルアーキテクチャからMLOpsまで

機械学習モデルを使用して画像に関するさまざまな課題を解くための実践的な解説書。コンピュータビジョンは機械学習で最も注目度の高い分野のひとつです。本書では、機械学習エンジニアやデータサイエンティストを対象に、コンピュータビジョンに関連する機械学習の手法、アーキテクチャ、課題、運用などを網羅的に解説します。読者は、分類、物体検出、セグメンテーション、異常検知、画像生成、キャプション生成といった画像関連の問題を、機械学習で解決する方法を学びます。また、データセットの作成、前処理、モデルの設計、学習、評価、デプロイ、監視といった標準的な機械学習の運用からMLOpsまで同時にマスターできます。日本語版で...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ryan Gillard, Martin Görner, Valliappa Lakshmanan, 大山 匠, 松田 晃一
Format: Buch
Sprache:jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:機械学習モデルを使用して画像に関するさまざまな課題を解くための実践的な解説書。コンピュータビジョンは機械学習で最も注目度の高い分野のひとつです。本書では、機械学習エンジニアやデータサイエンティストを対象に、コンピュータビジョンに関連する機械学習の手法、アーキテクチャ、課題、運用などを網羅的に解説します。読者は、分類、物体検出、セグメンテーション、異常検知、画像生成、キャプション生成といった画像関連の問題を、機械学習で解決する方法を学びます。また、データセットの作成、前処理、モデルの設計、学習、評価、デプロイ、監視といった標準的な機械学習の運用からMLOpsまで同時にマスターできます。日本語版では、コンピュータビジョン領域でのトランスフォーマーモデルの活用や画像生成の新潮流である拡散モデルについてまとめた特別コラムを追加で収録しました。