A particle swarm minimization algorithm with enhanced hill climbing capability

We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:South African journal of science 2006-11, Vol.102 (11), p.543-547
Hauptverfasser: Wood, Derren W., Kok, Schalk, Groenwold, Albert A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 11
container_start_page 543
container_title South African journal of science
container_volume 102
creator Wood, Derren W.
Kok, Schalk
Groenwold, Albert A.
description We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set and two practical global optimization problems, which illustrate that the proposed algorithm may outperform the classical particle swarm algorithm for certain classes of problems.
format Article
fullrecord <record><control><sourceid>sabinet</sourceid><recordid>TN_cdi_sabinet_saepub_10520_EJC96480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sabinet_id>10520/EJC96480</sabinet_id><sourcerecordid>10520/EJC96480</sourcerecordid><originalsourceid>FETCH-LOGICAL-s184t-c4ef770b63c575cfa33a44a15fd9396e5a4defb2492a861c5b706aed5206415b3</originalsourceid><addsrcrecordid>eNotjc1KxDAYRYMoOI6-QxZuC0nz02Q5lPGPQTe6Ll_SdPpJmilNZNCnt6CbezaHcy_Ihlurq0Yae0k2jAlT1UKJa3KT8ydjXNRGbcjrjs6wFPQx0HyGZaITJpzwBwqeEoV4PC1Yxome16UhjZB86OmIMVIfcXKYjtTDDA4jlu9bcjVAzOHun1vy8bB_b5-qw9vjc7s7VJkbWSovw9A0zGnhVaP8AEKAlMDV0FthdVAg-zC4WtoajOZeuYZpCL2qmZZcObEl93_dvB6nULoMYf5yHWer0u1fWqulYeIXazdL2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A particle swarm minimization algorithm with enhanced hill climbing capability</title><source>Alma/SFX Local Collection</source><creator>Wood, Derren W. ; Kok, Schalk ; Groenwold, Albert A.</creator><creatorcontrib>Wood, Derren W. ; Kok, Schalk ; Groenwold, Albert A.</creatorcontrib><description>We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set and two practical global optimization problems, which illustrate that the proposed algorithm may outperform the classical particle swarm algorithm for certain classes of problems.</description><identifier>ISSN: 0038-2353</identifier><identifier>EISSN: 1996-7489</identifier><language>eng</language><publisher>Academy of Science for South Africa (ASSAf)</publisher><ispartof>South African journal of science, 2006-11, Vol.102 (11), p.543-547</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Wood, Derren W.</creatorcontrib><creatorcontrib>Kok, Schalk</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><title>A particle swarm minimization algorithm with enhanced hill climbing capability</title><title>South African journal of science</title><description>We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set and two practical global optimization problems, which illustrate that the proposed algorithm may outperform the classical particle swarm algorithm for certain classes of problems.</description><issn>0038-2353</issn><issn>1996-7489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>JRA</sourceid><recordid>eNotjc1KxDAYRYMoOI6-QxZuC0nz02Q5lPGPQTe6Ll_SdPpJmilNZNCnt6CbezaHcy_Ihlurq0Yae0k2jAlT1UKJa3KT8ydjXNRGbcjrjs6wFPQx0HyGZaITJpzwBwqeEoV4PC1Yxome16UhjZB86OmIMVIfcXKYjtTDDA4jlu9bcjVAzOHun1vy8bB_b5-qw9vjc7s7VJkbWSovw9A0zGnhVaP8AEKAlMDV0FthdVAg-zC4WtoajOZeuYZpCL2qmZZcObEl93_dvB6nULoMYf5yHWer0u1fWqulYeIXazdL2A</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Wood, Derren W.</creator><creator>Kok, Schalk</creator><creator>Groenwold, Albert A.</creator><general>Academy of Science for South Africa (ASSAf)</general><scope>AEIZH</scope><scope>JRA</scope></search><sort><creationdate>20061101</creationdate><title>A particle swarm minimization algorithm with enhanced hill climbing capability</title><author>Wood, Derren W. ; Kok, Schalk ; Groenwold, Albert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s184t-c4ef770b63c575cfa33a44a15fd9396e5a4defb2492a861c5b706aed5206415b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Derren W.</creatorcontrib><creatorcontrib>Kok, Schalk</creatorcontrib><creatorcontrib>Groenwold, Albert A.</creatorcontrib><collection>Sabinet:Open Access</collection><collection>Sabinet African Journals Open Access Collection</collection><jtitle>South African journal of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Derren W.</au><au>Kok, Schalk</au><au>Groenwold, Albert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A particle swarm minimization algorithm with enhanced hill climbing capability</atitle><jtitle>South African journal of science</jtitle><date>2006-11-01</date><risdate>2006</risdate><volume>102</volume><issue>11</issue><spage>543</spage><epage>547</epage><pages>543-547</pages><issn>0038-2353</issn><eissn>1996-7489</eissn><abstract>We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set and two practical global optimization problems, which illustrate that the proposed algorithm may outperform the classical particle swarm algorithm for certain classes of problems.</abstract><pub>Academy of Science for South Africa (ASSAf)</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-2353
ispartof South African journal of science, 2006-11, Vol.102 (11), p.543-547
issn 0038-2353
1996-7489
language eng
recordid cdi_sabinet_saepub_10520_EJC96480
source Alma/SFX Local Collection
title A particle swarm minimization algorithm with enhanced hill climbing capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sabinet&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20particle%20swarm%20minimization%20algorithm%20with%20enhanced%20hill%20climbing%20capability&rft.jtitle=South%20African%20journal%20of%20science&rft.au=Wood,%20Derren%20W.&rft.date=2006-11-01&rft.volume=102&rft.issue=11&rft.spage=543&rft.epage=547&rft.pages=543-547&rft.issn=0038-2353&rft.eissn=1996-7489&rft_id=info:doi/&rft_dat=%3Csabinet%3E10520/EJC96480%3C/sabinet%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sabinet_id=10520/EJC96480&rfr_iscdi=true