A particle swarm minimization algorithm with enhanced hill climbing capability

We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:South African journal of science 2006-11, Vol.102 (11), p.543-547
Hauptverfasser: Wood, Derren W., Kok, Schalk, Groenwold, Albert A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a particle swarm minimization algorithm with enhanced hill climbing capability. In the algorithm, an inferior solution is accepted as a new local best if the current cost function value is lower than that of the previous iteration. Numerical results are presented for a popular test set and two practical global optimization problems, which illustrate that the proposed algorithm may outperform the classical particle swarm algorithm for certain classes of problems.
ISSN:0038-2353
1996-7489