Tuning solvent co-ordination in CsSnI perovskite solution the co-solvent dilution strategy for energy-efficient broadband photodetector arrays
With the advancement of perovskite research, there is a growing urgency to address the imperative need for practical applications while simultaneously tackling the enduring challenges of material reliability and lead (Pb) toxicity. The crystallization, morphology and optical properties of the result...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-07, Vol.12 (26), p.1634-1642 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the advancement of perovskite research, there is a growing urgency to address the imperative need for practical applications while simultaneously tackling the enduring challenges of material reliability and lead (Pb) toxicity. The crystallization, morphology and optical properties of the resultant film and device performance during solution processing are heavily influenced by the solution-based intermediate, a state determined using the coordination between solute and solvent. Solvent-solute coordination is closely correlated with solvent characteristics including ionization capabilities, dielectric constant, hydrolysis, and reactivity with solutes. Deionized water (D-water) characterized by its high polarity, ionization capability, and dielectric constant, when used as a co-solvent with dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), facilitates stronger coordination with CsI/SnI
4
species in Cs
2
SnI
6
precursor solution. This enhanced coordination leads to improved solvation, precursor reactivity, and solution homogeneity. Incorporating an appropriate amount of D-water as a co-solvent into Cs
2
SnI
6
precursor solution allows for tuning solvent coordination and control over the resulting thin film crystallization and morphology. The co-solvent diluted optimized Cs
2
SnI
6
thin film leads to the fabrication of energy-efficient broadband 4 × 3 photodetector arrays ranging from UV to NIR giving a responsivity of 5.5 A W
−1
at a substantially lower bias voltage of −0.1 V with stable operation stability in ambient air. These findings underscore the potential advantages of solution-processed Cs
2
SnI
6
perovskites in various optoelectronic applications.
Utilizing the co-solvent dilution strategy in direct solution coating to achieve a phase-pure Cs
2
SnI
6
lead-free perovskite, for the fabrication of energy-efficient broadband photodetectors. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d4ta02072c |