Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase
In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexis...
Gespeichert in:
Veröffentlicht in: | Soft matter 2024-09, Vol.2 (36), p.7313-732 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 36 |
container_start_page | 7313 |
container_title | Soft matter |
container_volume | 2 |
creator | Cheon, Jiyong Son, Joowang Lim, Sungbin Jeong, Yundon Park, Jung-Hoon Mitchell, Robert J Kim, Jaeup U Jeong, Joonwoo |
description | In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like
Bacillus subtilis
swims in a quasi-2D environment with aqueous liquid-liquid interfaces,
i.e.
, the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m
−1
at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior. |
doi_str_mv | 10.1039/d4sm00766b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4sm00766b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102076008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</originalsourceid><addsrcrecordid>eNpdkctLxDAQh4Morq-LdyXgRYRqXttkj74VdvGggreSTFONtM1u0oL-92YfruBpBuZj-M03CB1Sck4JH12UIjaEyDw3G2iHSiGyXAm1ue752wDtxvhJCFeC5ttowEdMKMLyHQQT37naYqOhs8FpDMHH6Np3XLtZ78psWbBr07jSYCP2FdYt1rPe-j5iF30X_NRB1tpGdw4wePvlYmdbsHj6oaPdR1uVrqM9WNU99Hp3-3L9kI2f7h-vL8cZMJZ3mQQuDVBFBAhJjDGSkpJpa5Us0z1AmOFyBIoxoLocVWRouTaVknwoJatyvodOl3unwad0sSsaF8HWtW7nUQtOCUuaCFEJPfmHfvo-tCndnMrnngRP1NmSWkgJtiqmwTU6fBeUFHP1xY14nizUXyX4eLWyN40t1-iv6wQcLYEQYT39-x3_AcfsiU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106384143</pqid></control><display><type>article</type><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</creator><creatorcontrib>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</creatorcontrib><description>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like
Bacillus subtilis
swims in a quasi-2D environment with aqueous liquid-liquid interfaces,
i.e.
, the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m
−1
at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</description><identifier>ISSN: 1744-683X</identifier><identifier>ISSN: 1744-6848</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d4sm00766b</identifier><identifier>PMID: 39248026</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Active transport ; Bacillus subtilis ; Bacteria ; Coexistence ; Flagella ; Interfaces ; Liquid crystals ; Liquid Crystals - chemistry ; Movement ; Nematic crystals ; Surface Tension ; Swimming ; Water - chemistry</subject><ispartof>Soft matter, 2024-09, Vol.2 (36), p.7313-732</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</cites><orcidid>0009-0003-7833-2988 ; 0000-0002-9608-5381 ; 0000-0002-2853-2784 ; 0000-0001-5316-1690 ; 0000-0002-3082-783X ; 0009-0008-9493-0722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39248026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheon, Jiyong</creatorcontrib><creatorcontrib>Son, Joowang</creatorcontrib><creatorcontrib>Lim, Sungbin</creatorcontrib><creatorcontrib>Jeong, Yundon</creatorcontrib><creatorcontrib>Park, Jung-Hoon</creatorcontrib><creatorcontrib>Mitchell, Robert J</creatorcontrib><creatorcontrib>Kim, Jaeup U</creatorcontrib><creatorcontrib>Jeong, Joonwoo</creatorcontrib><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like
Bacillus subtilis
swims in a quasi-2D environment with aqueous liquid-liquid interfaces,
i.e.
, the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m
−1
at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</description><subject>Active transport</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Coexistence</subject><subject>Flagella</subject><subject>Interfaces</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>Movement</subject><subject>Nematic crystals</subject><subject>Surface Tension</subject><subject>Swimming</subject><subject>Water - chemistry</subject><issn>1744-683X</issn><issn>1744-6848</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQh4Morq-LdyXgRYRqXttkj74VdvGggreSTFONtM1u0oL-92YfruBpBuZj-M03CB1Sck4JH12UIjaEyDw3G2iHSiGyXAm1ue752wDtxvhJCFeC5ttowEdMKMLyHQQT37naYqOhs8FpDMHH6Np3XLtZ78psWbBr07jSYCP2FdYt1rPe-j5iF30X_NRB1tpGdw4wePvlYmdbsHj6oaPdR1uVrqM9WNU99Hp3-3L9kI2f7h-vL8cZMJZ3mQQuDVBFBAhJjDGSkpJpa5Us0z1AmOFyBIoxoLocVWRouTaVknwoJatyvodOl3unwad0sSsaF8HWtW7nUQtOCUuaCFEJPfmHfvo-tCndnMrnngRP1NmSWkgJtiqmwTU6fBeUFHP1xY14nizUXyX4eLWyN40t1-iv6wQcLYEQYT39-x3_AcfsiU8</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Cheon, Jiyong</creator><creator>Son, Joowang</creator><creator>Lim, Sungbin</creator><creator>Jeong, Yundon</creator><creator>Park, Jung-Hoon</creator><creator>Mitchell, Robert J</creator><creator>Kim, Jaeup U</creator><creator>Jeong, Joonwoo</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-7833-2988</orcidid><orcidid>https://orcid.org/0000-0002-9608-5381</orcidid><orcidid>https://orcid.org/0000-0002-2853-2784</orcidid><orcidid>https://orcid.org/0000-0001-5316-1690</orcidid><orcidid>https://orcid.org/0000-0002-3082-783X</orcidid><orcidid>https://orcid.org/0009-0008-9493-0722</orcidid></search><sort><creationdate>20240918</creationdate><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><author>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active transport</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Coexistence</topic><topic>Flagella</topic><topic>Interfaces</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>Movement</topic><topic>Nematic crystals</topic><topic>Surface Tension</topic><topic>Swimming</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Jiyong</creatorcontrib><creatorcontrib>Son, Joowang</creatorcontrib><creatorcontrib>Lim, Sungbin</creatorcontrib><creatorcontrib>Jeong, Yundon</creatorcontrib><creatorcontrib>Park, Jung-Hoon</creatorcontrib><creatorcontrib>Mitchell, Robert J</creatorcontrib><creatorcontrib>Kim, Jaeup U</creatorcontrib><creatorcontrib>Jeong, Joonwoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Jiyong</au><au>Son, Joowang</au><au>Lim, Sungbin</au><au>Jeong, Yundon</au><au>Park, Jung-Hoon</au><au>Mitchell, Robert J</au><au>Kim, Jaeup U</au><au>Jeong, Joonwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>2</volume><issue>36</issue><spage>7313</spage><epage>732</epage><pages>7313-732</pages><issn>1744-683X</issn><issn>1744-6848</issn><eissn>1744-6848</eissn><abstract>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like
Bacillus subtilis
swims in a quasi-2D environment with aqueous liquid-liquid interfaces,
i.e.
, the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m
−1
at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39248026</pmid><doi>10.1039/d4sm00766b</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0003-7833-2988</orcidid><orcidid>https://orcid.org/0000-0002-9608-5381</orcidid><orcidid>https://orcid.org/0000-0002-2853-2784</orcidid><orcidid>https://orcid.org/0000-0001-5316-1690</orcidid><orcidid>https://orcid.org/0000-0002-3082-783X</orcidid><orcidid>https://orcid.org/0009-0008-9493-0722</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2024-09, Vol.2 (36), p.7313-732 |
issn | 1744-683X 1744-6848 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_d4sm00766b |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Active transport Bacillus subtilis Bacteria Coexistence Flagella Interfaces Liquid crystals Liquid Crystals - chemistry Movement Nematic crystals Surface Tension Swimming Water - chemistry |
title | Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motile%20bacteria%20crossing%20liquid-liquid%20interfaces%20of%20an%20aqueous%20isotropic-nematic%20coexistence%20phase&rft.jtitle=Soft%20matter&rft.au=Cheon,%20Jiyong&rft.date=2024-09-18&rft.volume=2&rft.issue=36&rft.spage=7313&rft.epage=732&rft.pages=7313-732&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d4sm00766b&rft_dat=%3Cproquest_rsc_p%3E3102076008%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106384143&rft_id=info:pmid/39248026&rfr_iscdi=true |