Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase

In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2024-09, Vol.2 (36), p.7313-732
Hauptverfasser: Cheon, Jiyong, Son, Joowang, Lim, Sungbin, Jeong, Yundon, Park, Jung-Hoon, Mitchell, Robert J, Kim, Jaeup U, Jeong, Joonwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 36
container_start_page 7313
container_title Soft matter
container_volume 2
creator Cheon, Jiyong
Son, Joowang
Lim, Sungbin
Jeong, Yundon
Park, Jung-Hoon
Mitchell, Robert J
Kim, Jaeup U
Jeong, Joonwoo
description In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m −1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases. We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.
doi_str_mv 10.1039/d4sm00766b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4sm00766b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102076008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</originalsourceid><addsrcrecordid>eNpdkctLxDAQh4Morq-LdyXgRYRqXttkj74VdvGggreSTFONtM1u0oL-92YfruBpBuZj-M03CB1Sck4JH12UIjaEyDw3G2iHSiGyXAm1ue752wDtxvhJCFeC5ttowEdMKMLyHQQT37naYqOhs8FpDMHH6Np3XLtZ78psWbBr07jSYCP2FdYt1rPe-j5iF30X_NRB1tpGdw4wePvlYmdbsHj6oaPdR1uVrqM9WNU99Hp3-3L9kI2f7h-vL8cZMJZ3mQQuDVBFBAhJjDGSkpJpa5Us0z1AmOFyBIoxoLocVWRouTaVknwoJatyvodOl3unwad0sSsaF8HWtW7nUQtOCUuaCFEJPfmHfvo-tCndnMrnngRP1NmSWkgJtiqmwTU6fBeUFHP1xY14nizUXyX4eLWyN40t1-iv6wQcLYEQYT39-x3_AcfsiU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106384143</pqid></control><display><type>article</type><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</creator><creatorcontrib>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</creatorcontrib><description>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m −1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases. We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</description><identifier>ISSN: 1744-683X</identifier><identifier>ISSN: 1744-6848</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d4sm00766b</identifier><identifier>PMID: 39248026</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Active transport ; Bacillus subtilis ; Bacteria ; Coexistence ; Flagella ; Interfaces ; Liquid crystals ; Liquid Crystals - chemistry ; Movement ; Nematic crystals ; Surface Tension ; Swimming ; Water - chemistry</subject><ispartof>Soft matter, 2024-09, Vol.2 (36), p.7313-732</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</cites><orcidid>0009-0003-7833-2988 ; 0000-0002-9608-5381 ; 0000-0002-2853-2784 ; 0000-0001-5316-1690 ; 0000-0002-3082-783X ; 0009-0008-9493-0722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39248026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheon, Jiyong</creatorcontrib><creatorcontrib>Son, Joowang</creatorcontrib><creatorcontrib>Lim, Sungbin</creatorcontrib><creatorcontrib>Jeong, Yundon</creatorcontrib><creatorcontrib>Park, Jung-Hoon</creatorcontrib><creatorcontrib>Mitchell, Robert J</creatorcontrib><creatorcontrib>Kim, Jaeup U</creatorcontrib><creatorcontrib>Jeong, Joonwoo</creatorcontrib><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m −1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases. We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</description><subject>Active transport</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Coexistence</subject><subject>Flagella</subject><subject>Interfaces</subject><subject>Liquid crystals</subject><subject>Liquid Crystals - chemistry</subject><subject>Movement</subject><subject>Nematic crystals</subject><subject>Surface Tension</subject><subject>Swimming</subject><subject>Water - chemistry</subject><issn>1744-683X</issn><issn>1744-6848</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQh4Morq-LdyXgRYRqXttkj74VdvGggreSTFONtM1u0oL-92YfruBpBuZj-M03CB1Sck4JH12UIjaEyDw3G2iHSiGyXAm1ue752wDtxvhJCFeC5ttowEdMKMLyHQQT37naYqOhs8FpDMHH6Np3XLtZ78psWbBr07jSYCP2FdYt1rPe-j5iF30X_NRB1tpGdw4wePvlYmdbsHj6oaPdR1uVrqM9WNU99Hp3-3L9kI2f7h-vL8cZMJZ3mQQuDVBFBAhJjDGSkpJpa5Us0z1AmOFyBIoxoLocVWRouTaVknwoJatyvodOl3unwad0sSsaF8HWtW7nUQtOCUuaCFEJPfmHfvo-tCndnMrnngRP1NmSWkgJtiqmwTU6fBeUFHP1xY14nizUXyX4eLWyN40t1-iv6wQcLYEQYT39-x3_AcfsiU8</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Cheon, Jiyong</creator><creator>Son, Joowang</creator><creator>Lim, Sungbin</creator><creator>Jeong, Yundon</creator><creator>Park, Jung-Hoon</creator><creator>Mitchell, Robert J</creator><creator>Kim, Jaeup U</creator><creator>Jeong, Joonwoo</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-7833-2988</orcidid><orcidid>https://orcid.org/0000-0002-9608-5381</orcidid><orcidid>https://orcid.org/0000-0002-2853-2784</orcidid><orcidid>https://orcid.org/0000-0001-5316-1690</orcidid><orcidid>https://orcid.org/0000-0002-3082-783X</orcidid><orcidid>https://orcid.org/0009-0008-9493-0722</orcidid></search><sort><creationdate>20240918</creationdate><title>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</title><author>Cheon, Jiyong ; Son, Joowang ; Lim, Sungbin ; Jeong, Yundon ; Park, Jung-Hoon ; Mitchell, Robert J ; Kim, Jaeup U ; Jeong, Joonwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-7c37bc1804c470bbb710d2aee87d848c02b379c822c1ad9f05e3abf8735772f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active transport</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Coexistence</topic><topic>Flagella</topic><topic>Interfaces</topic><topic>Liquid crystals</topic><topic>Liquid Crystals - chemistry</topic><topic>Movement</topic><topic>Nematic crystals</topic><topic>Surface Tension</topic><topic>Swimming</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Jiyong</creatorcontrib><creatorcontrib>Son, Joowang</creatorcontrib><creatorcontrib>Lim, Sungbin</creatorcontrib><creatorcontrib>Jeong, Yundon</creatorcontrib><creatorcontrib>Park, Jung-Hoon</creatorcontrib><creatorcontrib>Mitchell, Robert J</creatorcontrib><creatorcontrib>Kim, Jaeup U</creatorcontrib><creatorcontrib>Jeong, Joonwoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Jiyong</au><au>Son, Joowang</au><au>Lim, Sungbin</au><au>Jeong, Yundon</au><au>Park, Jung-Hoon</au><au>Mitchell, Robert J</au><au>Kim, Jaeup U</au><au>Jeong, Joonwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2024-09-18</date><risdate>2024</risdate><volume>2</volume><issue>36</issue><spage>7313</spage><epage>732</epage><pages>7313-732</pages><issn>1744-683X</issn><issn>1744-6848</issn><eissn>1744-6848</eissn><abstract>In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e. , the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m −1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases. We investigate how bacteria interact with a liquid-liquid interface, revealing the significance of interfacial tension in bacteria's crossing behavior.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39248026</pmid><doi>10.1039/d4sm00766b</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0003-7833-2988</orcidid><orcidid>https://orcid.org/0000-0002-9608-5381</orcidid><orcidid>https://orcid.org/0000-0002-2853-2784</orcidid><orcidid>https://orcid.org/0000-0001-5316-1690</orcidid><orcidid>https://orcid.org/0000-0002-3082-783X</orcidid><orcidid>https://orcid.org/0009-0008-9493-0722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2024-09, Vol.2 (36), p.7313-732
issn 1744-683X
1744-6848
1744-6848
language eng
recordid cdi_rsc_primary_d4sm00766b
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Active transport
Bacillus subtilis
Bacteria
Coexistence
Flagella
Interfaces
Liquid crystals
Liquid Crystals - chemistry
Movement
Nematic crystals
Surface Tension
Swimming
Water - chemistry
title Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motile%20bacteria%20crossing%20liquid-liquid%20interfaces%20of%20an%20aqueous%20isotropic-nematic%20coexistence%20phase&rft.jtitle=Soft%20matter&rft.au=Cheon,%20Jiyong&rft.date=2024-09-18&rft.volume=2&rft.issue=36&rft.spage=7313&rft.epage=732&rft.pages=7313-732&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d4sm00766b&rft_dat=%3Cproquest_rsc_p%3E3102076008%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106384143&rft_id=info:pmid/39248026&rfr_iscdi=true