Mixed host co-assembled systems for broad-scope analyte sensing

Here we report a systems chemistry oriented approach for developing information-rich mixed host chemosensors. We show that co-assembling macrocyclic hosts from different classes, DimerDye sulfonatocalix[4]arenes and cucurbit[ n ]urils, effectively increases the scope of analyte binding interactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-08, Vol.15 (31), p.12388-12397
Hauptverfasser: Selinger, Allison J, Krämer, Joana, Poarch, Eric, Hore, Dennis, Biedermann, Frank, Hof, Fraser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we report a systems chemistry oriented approach for developing information-rich mixed host chemosensors. We show that co-assembling macrocyclic hosts from different classes, DimerDye sulfonatocalix[4]arenes and cucurbit[ n ]urils, effectively increases the scope of analyte binding interactions and therefore, sensory outputs. This simple dynamic strategy exploits cross-reactive noncovalent host-host complexation interactions while integrating a reporter dye, thereby producing emergent photophysical responses when an analyte interacts with either host. We first demonstrate the advantages of mixed host co-assembled chemosensors through an increased detection range of hydrophobic, cationic, neutral, and anionic drugs. We then implement mixed host sensors in an array-based platform for the differentiation of illicit drugs, including cannabinoids, benzodiazepine analogs, opiates, anesthetics, amphetamine, and common adulterating substances. Finally, the potential of this approach is applied to profiling real-world multi-component illicit street drug samples, proving to be more effective than classical sensor arrays. Mixed host chemosensors position a single dye within a co-assembled system of two different host classes. Data-rich responses are produced upon analyte binding to either host, increasing detection scope to hydrophobic, cationic and neutral drugs.
ISSN:2041-6520
2041-6539
DOI:10.1039/d4sc02788d