Hydrogenolysis of furfuryl alcohol over CuCeMgAl mixed metal oxide catalysts derived from layered double hydroxides

The conversion of biomass-derived furfuryl alcohol into 1,2-pentanediol, a high-value fine chemical with wide applications, is of high research and commercial value. In this study, Ce-doped CuCeMgAl mixed metal oxide catalysts were synthesized using layered double hydroxides as the precursor. Charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reaction chemistry & engineering 2024-06, Vol.9 (7), p.194-1913
Hauptverfasser: Wang, Zhihui, Li, Wenbo, Fu, Xinyao, Zhang, Chen, Zhang, Wei, Huang, Long, Li, Cuiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conversion of biomass-derived furfuryl alcohol into 1,2-pentanediol, a high-value fine chemical with wide applications, is of high research and commercial value. In this study, Ce-doped CuCeMgAl mixed metal oxide catalysts were synthesized using layered double hydroxides as the precursor. Characterization techniques including BET, XRD, XPS, TPR and TPD were used to study the structure and physiochemical properties of synthesized catalysts. In furfuryl alcohol hydrogenolysis, CuCeMgAl catalysts showed higher furfuryl alcohol conversion and higher 1,2-pentanediol yield than the CuMgAl sample, likely due to more metal active sites and higher concentration of basic sites. Furthermore, reduction temperature, an important parameter for MMO-type catalysts, was studied for its effect on catalyst activity. It is found that basic site concentration is affected by reduction temperatures, leading to distinct activity for CuCeMgAl catalysts. With lower reduction temperatures, the activity of CuCeMgAl catalysts could be further increased, demonstrating the importance of reduction parameters for Cu-based mixed metal oxide catalysts. LDH-derived CuCeMgAl mixed metal oxide catalysts were synthesized. Ce addition promoted Cu dispersion and improved catalyst basicity, resulting in high activity in furfuryl alcohol hydrogenolysis and high selectivity toward 1,2-pentanediol.
ISSN:2058-9883
2058-9883
DOI:10.1039/d4re00070f