fermented quinoa alleviates hyperlipidemia in mice by regulating the amino acid metabolism pathway

Monascus has the ability to produce secondary metabolites, such as monacolin K (MK), known for its physiological functions, including lipid-lowering effects. Widely utilized in industries such as health food and medicine, MK is a significant compound derived from Monascus . Quinoa, recognized by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2024-09, Vol.15 (18), p.921-9223
Hauptverfasser: Huang, Zhiwei, Chen, Lichen, Xiao, Lishi, Ye, Yanfang, Mo, Wenlan, Zheng, Zhenghuai, Li, Xiangyou
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monascus has the ability to produce secondary metabolites, such as monacolin K (MK), known for its physiological functions, including lipid-lowering effects. Widely utilized in industries such as health food and medicine, MK is a significant compound derived from Monascus . Quinoa, recognized by the Food and Agriculture Organization of the United Nations as "the only plant food that can meet human basic nutritional needs by itself", possesses dual advantages of high nutritional value and medicinal food homology. This study employed animal experiments to investigate the hypolipidemic activity of Monascus -fermented quinoa (MFQ) and explored the molecular mechanism underlying the lipid-lowering effect of MFQ on hyperlipidemic mice through transcriptomic and metabolomic analyses. The results demonstrated that high-dose MFQ intervention (1600 mg kg −1 d −1 ) effectively decreased weight gain in hyperlipidemic mice without significant changes in cardiac index, renal index, or spleen index. Moreover, hepatic steatosis in mice was significantly improved. Serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol were markedly reduced, demonstrating that the lipid-lowering effect of MFQ was comparable to the drug control lovastatin. Conversely, both low-dose MFQ (400 mg kg −1 d −1 ) and unfermented quinoa exhibited no significant lipid-lowering effect. Integrated analysis of the transcriptome and metabolome suggested that MFQ may regulate amino acid levels in hyperlipidemic mice by influencing metabolic pathways such as phenylalanine, tyrosine, and tryptophan metabolism. This regulation alleviates hyperlipidemia induced by a high-fat diet, resulting in a significant reduction in blood lipid levels in mice. Monascus -fermented quinoa alleviates the hyperlipidemia in mice induced by a high-fat diet by regulating the metabolic pathways such as phenylalanine, tyrosine, and tryptophan metabolism.
ISSN:2042-6496
2042-650X
DOI:10.1039/d4fo00930d