Breaking barriers: How modified citrus pectin inhibits galectin-8

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2024-05, Vol.15 (9), p.4887-4893
Hauptverfasser: Shuai, Ming, Li, Yiqing, Guan, Fanqi, Fu, Guixia, Sun, Chengxin, Ren, Qianqian, Wang, Li, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL −1 . After MCP-30-3 was hydrolyzed by β-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods. Modified citrus pectin (MCP) can bind to galectin-8 in addition to galectin-3. Compared to the other MCP components, MCP-30-3 displayed the strongest inhibition of galectin-8.
ISSN:2042-6496
2042-650X
DOI:10.1039/d4fo00285g