An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes

Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue N δ -methylhistidine (MeHi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2024-09, Vol.252, p.295-35
Hauptverfasser: Hutton, Amy E, Foster, Jake, Sanders, James E. J, Taylor, Christopher J, Hoffmann, Stefan A, Cai, Yizhi, Lovelock, Sarah L, Green, Anthony P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue N δ -methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRS MIFAF ) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus ( Ma PylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRS MIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRS MIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements. A highly efficient aminoacyl tRNA synthetase (G1PylRS MIFAF ) has been developed to produce MeHis-containing proteins. High protein titres can be achieved with low ncAA concentrations (0.1 mM) enabling more economical production of MeHis-containing enzymes.
ISSN:1359-6640
1364-5498
1364-5498
DOI:10.1039/d4fd00019f