A new MOF@bioactive glass composite reinforced with silver nanoparticles - a new approach to designing antibacterial biomaterials
Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO 2 -CaO (BG) coated with NH 4...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2024-07, Vol.53 (26), p.1928-1937 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO
2
-CaO (BG) coated with NH
4
[Cu
3
(μ
3
-OH)(μ
3
-4-carboxypyrazolato)
3
] (Cu-MOF) with additionally anchored silver nanoparticles (AgNPs) was proposed. Ag@Cu-MOF@BG obtained by the spin coating approach in the form of a disc was characterized using PXRD, ATR-FTIR, XPS, ICP-OES, and TEM. Importantly, the material retained its bioactivity, although ion exchange in the bioactive glass administered as a disc is limited. Hydroxyapatite (HA) formation was identified in TEM images after 7 days of immersion of the composite in a physiological-like buffer (pH 7.4, 37 °C). The Cu and Ag contents of Ag@Cu-MOF@BG were as low as 0.013 and 0.018 wt% respectively, but the slow release of the AgNPs ensured its antibacterial nature. Ag@Cu-MOF@BG exhibited antibacterial activity against all tested bacteria (
E. coli
,
S. aureus
,
P. aeruginosa
, and
K. pneumoniae
) with the diameter of the inhibition zones of their growth between 8 and 10 mm and the reduction index determined to be ≥3. Moreover, the biocompatibility of the new composite has been demonstrated, as shown by cell culture assays with human dermal fibroblasts (HDFs). The results from the migration test also proved that the HDF cell's phenotypic properties were not changed, and the cell adhesion and migration ability were the same as in control indirect assays.
A new approach to overcoming the problem of infected bone defects has been developed by combining three components: bioactive glass, a Cu-based MOF, and AgNPs. Ag@Cu-MOF@BG exhibits antibacterial properties while being bioactive and biocompatible. |
---|---|
ISSN: | 1477-9226 1477-9234 1477-9234 |
DOI: | 10.1039/d4dt01190b |