Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction
A Co III complex ( 2 ) of a bispyridine-dioxime ligand (H 2 L NMe2 ) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of th...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2024-05, Vol.53 (19), p.8289-8297 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Co
III
complex (
2
) of a bispyridine-dioxime ligand (H
2
L
NMe2
) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the Co
II
complex (
2a
). The acid-base properties of
2
showed p
K
a
values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of
2
was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an
E
cat/2
of −1.01 V
vs.
the SHE, with an overpotential of 673 mV and a
k
obs
value of 2.6 × 10
3
s
−1
at pH 7. For comparison, the HER of the Co complex (
1
) lacking the
tert
-amine group at the secondary sphere was investigated in PBS, which showed a
k
obs
of 1.3 × 10
3
s
−1
and an overpotential of 577 mV. At pH 4, however,
2
revealed a ∼3 times higher
k
obs
value than
1
, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for
1
, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The
k
obs
values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)
2
(pyridine)(Cl)] complex, implying that the primary coordination sphere around
1
or
2
enhances the HER and offers better catalyst stability in acidic buffer solutions.
A
tert
-amine group poised over the secondary coordination sphere of a Co complex works as a proton relay site in the electrocatalytic hydrogen evolution reaction. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d4dt00009a |