Efficient radical-based near-infrared organic light-emitting diodes with an emission peak exceeding 800 nm
Near-infrared (NIR) organic light-emitting diodes (OLEDs) have attracted increasing attention due to their potential applications in night vision displays, optical communications and information security devices. However, due to the low quantum efficiency of NIR emitters and inefficient utilization...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-11, Vol.11 (45), p.15892-15897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Near-infrared (NIR) organic light-emitting diodes (OLEDs) have attracted increasing attention due to their potential applications in night vision displays, optical communications and information security devices. However, due to the low quantum efficiency of NIR emitters and inefficient utilization of triplet excitons, efficient NIR OLEDs have been a challenge. Herein, a new luminescent radical,
N
-(4′-(bis(2,4,6-trichlorophenyl)methyl)-3′,5′-dichloro-[1,1′-biphenyl]-4-yl)-
N
-(naphthalen-2-yl)naphthalen-2-amine (
TTM-NPNA
), was designed and synthesized.
TTM-NPNA
shows not only deep NIR emission but also high photoluminescence quantum efficiency (PLQE). Even in toluene and 5.0 wt%
TTM-NPNA
:CBP doped film, it still maintains PLQE of 24% and 16%, respectively, with emission peaks over 800 nm. In addition,
TTM-NPNA
exhibits excellent thermal and electrochemical stability and has a non-Aufbau electronic structure. An OLED based on
TTM-NPNA
shows a maximum external quantum efficiency (EQE) of 3.9% with a peak wavelength of 822 nm, which is among the highest EQE values for metal-free NIR-OLEDs with an emission peak exceeding 800 nm. This study demonstrates the great potential of radicals as NIR-OLED emitters.
An OLED employing the
TTM-NPNA
radical as the emitter exhibits a high external quantum efficiency (EQE) value of 3.9% with an electroluminescence peak at 822 nm. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/d3tc03017b |