GSH-activatable camptothecin prodrug-loaded gold nanostars coated with hyaluronic acid for targeted breast cancer therapy multiple radiosensitization strategies
Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as AS ), which...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-10, Vol.11 (41), p.9894-9911 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as
AS
), which, in turn, is further encapsulated with hyaluronic acid (HA) to give the final nanoplatform of AuNS@CPT-SS-FL@HA (denoted as
ASH
).
ASH
effectively carries the prodrug and targets the CD44 receptor on the surface of tumor cells. The endogenously overexpressed glutathione (GSH) in tumor cells breaks the disulfide bond to activate the prodrug and release the radiosensitizer drug camptothecin (CPT) and the fluorescence imaging reagent rhodamine derivative as a fluorophore (FL). The released FL can track the precise release position of the radiosensitizer camptothecin in tumor cells in real time. The AuNS has strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (
Z
= 79). At the same time, the AuNS can alleviate the tumor microenvironment (TME) hypoxia through its mild photothermal therapy (PTT). Therefore, through the multiple radiosensitizing effects of GSH depletion, the high atomic coefficient of Au, and hypoxia alleviation, accompanied by the radiosensitizer camptothecin, the designed
ASH
nanoplatform can effectively induce strong immunogenic cell death (ICD) at the tumor site
via
radiosensitizing therapy combined with PTT. This work provides a new way of constructing a structurally compact and highly functionalized hierarchical system toward efficient breast cancer treatment through ameliorating the TME with multiple modalities.
The nanoplatform of
ASH
was constructed for synergetic chemotherapy/photothermal/radiation therapy to stimulate the immunogenic cell death process for breast cancer treatment. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d3tb00965c |