Efficiently predicting and synthesizing intrinsic highly fire-safe polycarbonates with processability

High fire-safety is extremely required for polymer materials applied in many social environments, but the contradiction between fire-safety and processability for molecular design of intrinsic highly fire-safe polymers has remained a challenge, so perfect polymer candidates meeting the above require...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (17), p.97-978
Hauptverfasser: Yu, Ronghua, Wang, Shengda, Zhu, Yue, Li, Qianyu, You, Jiangan, Qiu, Jian, Wang, Yanhui, Liu, Jie, Tang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High fire-safety is extremely required for polymer materials applied in many social environments, but the contradiction between fire-safety and processability for molecular design of intrinsic highly fire-safe polymers has remained a challenge, so perfect polymer candidates meeting the above requirements are greatly lacking. Traditional design based on scientific intuition and trial-and-error experimentation is time-consuming and rather inefficient; herein, we establish a simple material genome approach (MGA) allowing high-throughput screening of intrinsic fire-safe and processable polycarbonates (PCs). A bisphenol unit was chosen as the "gene" of PC chains, and the glass transition temperature and the total heat release were key intrinsic parameters indicative of processability and fire-safe performance, respectively. Two PCs with optimized chemical structures were successfully predicted and synthesized. More excitingly, the predicted PCs show excellent comprehensive performances, and the novel mechanism for outstanding fire-safety performance has been found. This work provides an efficient guide in the design and synthesis of processable highly fire-safe polymers. An efficient strategy based on a material genome approach is created to predict highly fire-safe polycarbonates (PCs) with balanced processability. The predicted PCs show excellent comprehensive properties, especially exceptional fire-safe performance.
ISSN:2050-7488
2050-7496
DOI:10.1039/d3ta01200j