A focus on the use of real-world datasets for yield prediction

The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla et al. ( https://doi.org/10.1039/D2SC06041H ) show that a deep learning algorithm performs well on high-throughput experimentation d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-05, Vol.14 (19), p.4958-496
Hauptverfasser: Bustillo, Latimah, Rodrigues, Tiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla et al. ( https://doi.org/10.1039/D2SC06041H ) show that a deep learning algorithm performs well on high-throughput experimentation data but surprisingly poorly on real-world, historical data from a pharmaceutical company. The result suggests that there is considerable room for improvement when coupling ML to electronic laboratory notebook data. A machine learning workflow is used to predict reaction yields using data in a corporate electronic laboratory notebook.
ISSN:2041-6520
2041-6539
DOI:10.1039/d3sc90069j