A focus on the use of real-world datasets for yield prediction
The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla et al. ( https://doi.org/10.1039/D2SC06041H ) show that a deep learning algorithm performs well on high-throughput experimentation d...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2023-05, Vol.14 (19), p.4958-496 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prediction of reaction yields remains a challenging task for machine learning (ML), given the vast search spaces and absence of robust training data. Wiest, Chawla
et al.
(
https://doi.org/10.1039/D2SC06041H
) show that a deep learning algorithm performs well on high-throughput experimentation data but surprisingly poorly on real-world, historical data from a pharmaceutical company. The result suggests that there is considerable room for improvement when coupling ML to electronic laboratory notebook data.
A machine learning workflow is used to predict reaction yields using data in a corporate electronic laboratory notebook. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d3sc90069j |