Inducing tumor ferroptosis a pH-responsive NIR-II photothermal agent initiating lysosomal dysfunction

Ferroptosis is a unique programmed cell death process that was discovered a few years ago and plays an important role in tumor biology and treatment. However, it still remains a challenge to modulate tumor ferroptosis by spatiotemporally controlled cell-intrinsic Fenton chemistry. Herein, a pH activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-12, Vol.15 (47), p.1974-1978
Hauptverfasser: Zhang, Zhiwei, Xiang, Jingjing, Guan, Lijiao, Chen, Pu, Li, Changzhong, Guo, Chunlei, Hu, Yan, Huang, Saipeng, Cai, Lintao, Gong, Ping
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroptosis is a unique programmed cell death process that was discovered a few years ago and plays an important role in tumor biology and treatment. However, it still remains a challenge to modulate tumor ferroptosis by spatiotemporally controlled cell-intrinsic Fenton chemistry. Herein, a pH activated photothermal sensitizer IR-PE has been designed and synthesized on the basis of cyanine bearing a diamine moiety, which is capable of triggering the lysosomal dysfunction-mediated Fenton pathway under the irradiation of near-infrared light to evoke ferroptosis, thereby improving antitumor efficacy and mitigating systemic side effects. A pH-responsive molecule that can promote the intrinsic Fenton reaction in tumor cells with NIR light irradiation was developed, and the acid-activatable photothermal properties of IR-PE also exhibited strong antitumor efficacy.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr04124g