Exploring immunoregulatory properties of a phenolic-enriched maple syrup extract through integrated proteomics and assays
Our laboratory has established a comprehensive program to investigate the phytochemical composition and nutritional/medicinal properties of phenolic-enriched maple syrup extract (MSX). Previous studies support MSX's therapeutic potential in diverse disease models, primarily through its anti-inf...
Gespeichert in:
Veröffentlicht in: | Food & function 2024-01, Vol.15 (1), p.172-182 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our laboratory has established a comprehensive program to investigate the phytochemical composition and nutritional/medicinal properties of phenolic-enriched maple syrup extract (MSX). Previous studies support MSX's therapeutic potential in diverse disease models, primarily through its anti-inflammatory effects. We recently demonstrated MSX's ability to regulate inflammatory signaling pathways and modulate inflammatory markers and proteins in a lipopolysaccharide (LPS)-induced peritonitis mouse model. However, MSX's immunoregulatory properties remain unknown. Herein, we investigated MSX's immunoregulatory properties for the first time using an integrated approach, combining data-dependent acquisition (DDA) and data-independent acquisition (DIA) strategies in a proteomic analysis of spleen tissue collected from the aforementioned peritonitis mouse model. Additionally, we conducted immune cell activation assays using macrophages and T lymphocytes. The DIA analysis unveiled a distinctive expression pattern involving three proteins-Krt83, Thoc2, and Vps16-which were present in both the control and MSX-treated groups but absent in the LPS-induced model group. Furthermore, proteins Ppih and Dpp9 exhibited significant reductions in the MSX-treated group. Ingenuity pathway analysis indicated that MSX may modulate several critical signaling pathways, exerting a suppressive effect on immune responses in various cell types involved in both innate and adaptive immunity. Our
in vitro
cell assays supported findings from the proteomics, revealing that MSX significantly reduced the levels of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in LPS-stimulated human macrophage cells, as well as the levels of IL-2 in anti-CD3/anti-CD28-induced Jurkat T cells. Taken together, our investigations provide evidence that MSX exerts immune regulatory effects that impact both innate and adaptive immunity, which adds to the data supporting MSX's development as a functional food.
Phenolic-enriched maple syrup extract (MSX) demonstrates immunoregulatory properties within the context of inflammation, manifesting its regulatory effects across both innate and adaptive immune responses, thereby unveiling its therapeutic promise. |
---|---|
ISSN: | 2042-6496 2042-650X |
DOI: | 10.1039/d3fo04026g |