Intermetallic alloy structure-activity descriptors derived from inelastic X-ray scattering

Synchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-04, Vol.25 (16), p.11216-11226
Hauptverfasser: Bukowski, Brandon C, Purdy, Stephen C, Wegener, Evan C, Wu, Zhenwei, Kropf, A. Jeremy, Zhang, Guanghui, Miller, Jeffrey T, Greeley, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts in Resonant Inelastic X-ray Scattering (RIXS) signals. Simulated and experimental spectroscopy are directly compared to show that the promoter metal identity controls the orbital shifts in platinum electronic structure. The associated RIXS features are correlated with the differences in the band centers of the occupied and unoccupied d bands, providing chemical intuition for the alloy ligand effect and providing a connection to traditional descriptions of chemisorption. The ready accessibility of this descriptor to both DFT calculations and experimental spectroscopy, and its connection to chemisorption, allow for deeper connections between theory and characterization in the discovery of new catalysts. The d electronic states of Pt 3 M intermetallic alloys, probed by Resonant Inelastic X-ray scattering and Density Functional Theory, reveal new descriptors for molecular adsorption.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp00330b