Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks

Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2023-09, Vol.59 (76), p.1145-1148
Hauptverfasser: Faure Beaulieu, Zoé, Nicholas, Thomas C, Gardner, John L. A, Goodwin, Andrew L, Deringer, Volker L
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 76
container_start_page 1145
container_title Chemical communications (Cambridge, England)
container_volume 59
creator Faure Beaulieu, Zoé
Nicholas, Thomas C
Gardner, John L. A
Goodwin, Andrew L
Deringer, Volker L
description Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials. We use atomistic and coarse-grained machine-learning models to address a long-standing question: to what extent are ZIFs analogous to inorganic AB 2 phases?
doi_str_mv 10.1039/d3cc02265j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cc02265j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cc02265j</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cc02265j3</originalsourceid><addsrcrecordid>eNqFzr0KwjAUBeAgCtafxV3IC1QT06idi-Kug1u5pImmJo3cVESfXgXB0bOcA99yCJlwNuNM5PNKKMUWi6WsOyThYpmlMlsfu58t83QlMtkngxhr9g6X64TsiwAYdXpCsI2uqLk596DQBm9jaxX1oM5voE4DNrY5UROQPnVw9qPW2wqewUGrqUHw-h7wEkekZ8BFPf72kEy3m0OxSzGq8orWAz7K31Pxz19hkUMb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Faure Beaulieu, Zoé ; Nicholas, Thomas C ; Gardner, John L. A ; Goodwin, Andrew L ; Deringer, Volker L</creator><creatorcontrib>Faure Beaulieu, Zoé ; Nicholas, Thomas C ; Gardner, John L. A ; Goodwin, Andrew L ; Deringer, Volker L</creatorcontrib><description>Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials. We use atomistic and coarse-grained machine-learning models to address a long-standing question: to what extent are ZIFs analogous to inorganic AB 2 phases?</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d3cc02265j</identifier><ispartof>Chemical communications (Cambridge, England), 2023-09, Vol.59 (76), p.1145-1148</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Faure Beaulieu, Zoé</creatorcontrib><creatorcontrib>Nicholas, Thomas C</creatorcontrib><creatorcontrib>Gardner, John L. A</creatorcontrib><creatorcontrib>Goodwin, Andrew L</creatorcontrib><creatorcontrib>Deringer, Volker L</creatorcontrib><title>Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks</title><title>Chemical communications (Cambridge, England)</title><description>Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials. We use atomistic and coarse-grained machine-learning models to address a long-standing question: to what extent are ZIFs analogous to inorganic AB 2 phases?</description><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFzr0KwjAUBeAgCtafxV3IC1QT06idi-Kug1u5pImmJo3cVESfXgXB0bOcA99yCJlwNuNM5PNKKMUWi6WsOyThYpmlMlsfu58t83QlMtkngxhr9g6X64TsiwAYdXpCsI2uqLk596DQBm9jaxX1oM5voE4DNrY5UROQPnVw9qPW2wqewUGrqUHw-h7wEkekZ8BFPf72kEy3m0OxSzGq8orWAz7K31Pxz19hkUMb</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Faure Beaulieu, Zoé</creator><creator>Nicholas, Thomas C</creator><creator>Gardner, John L. A</creator><creator>Goodwin, Andrew L</creator><creator>Deringer, Volker L</creator><scope/></search><sort><creationdate>20230921</creationdate><title>Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks</title><author>Faure Beaulieu, Zoé ; Nicholas, Thomas C ; Gardner, John L. A ; Goodwin, Andrew L ; Deringer, Volker L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cc02265j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faure Beaulieu, Zoé</creatorcontrib><creatorcontrib>Nicholas, Thomas C</creatorcontrib><creatorcontrib>Gardner, John L. A</creatorcontrib><creatorcontrib>Goodwin, Andrew L</creatorcontrib><creatorcontrib>Deringer, Volker L</creatorcontrib><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faure Beaulieu, Zoé</au><au>Nicholas, Thomas C</au><au>Gardner, John L. A</au><au>Goodwin, Andrew L</au><au>Deringer, Volker L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><date>2023-09-21</date><risdate>2023</risdate><volume>59</volume><issue>76</issue><spage>1145</spage><epage>1148</epage><pages>1145-1148</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials. We use atomistic and coarse-grained machine-learning models to address a long-standing question: to what extent are ZIFs analogous to inorganic AB 2 phases?</abstract><doi>10.1039/d3cc02265j</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2023-09, Vol.59 (76), p.1145-1148
issn 1359-7345
1364-548X
language
recordid cdi_rsc_primary_d3cc02265j
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-grained%20fully%20atomistic%20machine%20learning%20for%20zeolitic%20imidazolate%20frameworks&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Faure%20Beaulieu,%20Zo%C3%A9&rft.date=2023-09-21&rft.volume=59&rft.issue=76&rft.spage=1145&rft.epage=1148&rft.pages=1145-1148&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d3cc02265j&rft_dat=%3Crsc%3Ed3cc02265j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true