Coarse-grained fully atomistic machine learning for zeolitic imidazolate frameworks

Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2023-09, Vol.59 (76), p.1145-1148
Hauptverfasser: Faure Beaulieu, Zoé, Nicholas, Thomas C, Gardner, John L. A, Goodwin, Andrew L, Deringer, Volker L
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB 2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials. We use atomistic and coarse-grained machine-learning models to address a long-standing question: to what extent are ZIFs analogous to inorganic AB 2 phases?
ISSN:1359-7345
1364-548X
DOI:10.1039/d3cc02265j