Effects of the polymer glass transition on the stability of nanoparticle dispersions

In addition to the repulsive and attractive interaction forces described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, many charged colloid systems are stabilized by non-DLVO contributions stemming from specific material attributes. Here, we investigate non-DLVO contributions to the stability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2023-02, Vol.19 (6), p.1212-1218
Hauptverfasser: Scott, Douglas M, Prud'homme, Robert K, Priestley, Rodney D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to the repulsive and attractive interaction forces described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, many charged colloid systems are stabilized by non-DLVO contributions stemming from specific material attributes. Here, we investigate non-DLVO contributions to the stability of polymer colloids stemming from the intra-particle glass transition temperature ( T g ). Flash nanoprecipitation is used to fabricate nanoparticles (NPs) from a library of polymers and dispersion stability is studied in the presence of both hydrophilic and hydrophobic salts. When adding KCl, stability undergoes a discontinuous decrease as T g increases above room temperature, indicating greater stability of rubbery NPs over glassy NPs. Glassy NPs are also found to interact strongly with hydrophobic phosphonium cations (PR 4 + ), yielding charge inversion and intermediate aggregation while rubbery NPs resist ion adsorption. Differences in the lifetime of ionic structuration within mobile surface layers is presented as a potential mechanism underlying the observed phenomenon. The stability of polymer nanoparticle dispersions is strongly impacted by the glass transition temperature of constituent polymers.
ISSN:1744-683X
1744-6848
DOI:10.1039/d2sm01595a