Facile synthesis of carbon and oxygen vacancy co-modified TiNbO as an anode material for lithium-ion batteries
Titanium niobium oxides (TNOs), benefitting from their large specific capacity and Wadsley-Roth shear structure, are competitive anode materials for high-energy density and high-rate lithium-ion batteries. Herein, carbon and oxygen vacancy co-modified TiNb 6 O 17 (A-TNO) was synthesized through a fa...
Gespeichert in:
Veröffentlicht in: | RSC advances 2022-04, Vol.12 (21), p.13127-13134 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Titanium niobium oxides (TNOs), benefitting from their large specific capacity and Wadsley-Roth shear structure, are competitive anode materials for high-energy density and high-rate lithium-ion batteries. Herein, carbon and oxygen vacancy co-modified TiNb
6
O
17
(A-TNO) was synthesized through a facile sol-gel reaction with subsequent heat treatment and ball-milling. Characterizations indicated that A-TNO is composed of nanosized primary particles, and the carbon content is about 0.7 wt%. The nanoparticles increase the contact area of the electrode and electrolyte and shorten the lithium-ion diffusion distance. The carbon and oxygen vacancies decrease the charge transfer resistance and enhance the Li-ion diffusion coefficient of the obtained anode material. As a result of these advantages, A-TNO exhibits excellent rate performance (208 and 177 mA h g
−1
at 10C and 20C, respectively). This work reveals that A-TNO possesses good electrochemical performance and has a facile preparation process, thus A-TNO is believed to be a potential anode material for large-scale applications.
Carbon and oxygen vacancy co-modified TiNb
6
O
17
is synthesized through a facile sol-gel reaction. It possesses good electrochemical performance, thus is believed to be a potential anode material for large-scale applications. |
---|---|
ISSN: | 2046-2069 |
DOI: | 10.1039/d2ra01757a |