Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators

Wearable displays or head-mounted displays (HMDs) have the ability to create a virtual image in the field of view of one or both eyes. Such displays constitute the main platform for numerous virtual reality (VR)- and augmented reality (AR)-based applications. Meta-holographic displays integrated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale horizons 2023-05, Vol.8 (6), p.759-766
Hauptverfasser: Asad, Aqsa, Kim, Joohoon, Khaliq, Hafiz Saad, Mahmood, Nasir, Akbar, Jehan, Chani, Muhammad Tariq Saeed, Kim, Yeseul, Jeon, Dongmin, Zubair, Muhammad, Mehmood, Muhammad Qasim, Massoud, Yehia, Rho, Junsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable displays or head-mounted displays (HMDs) have the ability to create a virtual image in the field of view of one or both eyes. Such displays constitute the main platform for numerous virtual reality (VR)- and augmented reality (AR)-based applications. Meta-holographic displays integrated with AR technology have potential applications in the advertising, media, and healthcare sectors. In the previous decade, dielectric metasurfaces emerged as a suitable choice for designing compact devices for highly efficient displays. However, the small conversion efficiency, narrow bandwidth, and costly fabrication procedures limit the device's functionalities. Here, we proposed a spin-isolated dielectric multi-functional metasurface operating at broadband optical wavelengths with high transmission efficiency in the ultraviolet (UV) and visible (Vis) regimes. The proposed metasurface comprised silicon nitride (Si 3 N 4 )-based meta-atoms with high bandgap, i.e. , ∼ 5.9 eV, and encoded two holographic phase profiles. Previously, the multiple pieces of holographic information incorporated in the metasurfaces using interleaved and layer stacking techniques resulted in noisy and low-efficiency outputs. A single planar metasurface integrated with a liquid crystal was demonstrated numerically and experimentally in the current work to validate the spin-isolated dynamic UV-Vis holographic information at broadband wavelengths. In our opinion, the proposed metasurface can have promising applications in healthcare, optical security encryption, anti-counterfeiting, and UV-Vis nanophotonics. Wearable displays or head-mounted displays (HMDs) have the ability to create a virtual image in the field of view of one or both eyes.
ISSN:2055-6756
2055-6764
2055-6764
DOI:10.1039/d2nh00555g