Integrated design of an amination process of lignin oxygenated model compounds to synthesize cyclohexylamine: catalyst nanostructure engineering and catalytic conditional strategy

Nowadays, the vigorous development of biomass catalytic valorization is gradually moving towards a promising era. Integrating nitrogen elements into biomass catalytic systems promises more possibilities for upgrading the roadmap of biomass feedstocks. The amination of lignin to cyclohexylamine and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2022-08, Vol.24 (17), p.6335-6359
Hauptverfasser: Ji, Na, Lei, Yaxuan, Yu, Zhihao, Li, Hanyang, Diao, Xinyong, Lu, Xuebin, Wang, Shurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, the vigorous development of biomass catalytic valorization is gradually moving towards a promising era. Integrating nitrogen elements into biomass catalytic systems promises more possibilities for upgrading the roadmap of biomass feedstocks. The amination of lignin to cyclohexylamine and its derivatives is a potential alternative to the fossil-based pathway. One-pot catalytic amination of lignin model compounds is challenging and inefficient due to their structural characteristics. Concerning the amination pathway, cyclohexanone and cyclohexanol are important intermediates. Based on this, we discuss the structural preferences of catalysts in the selective hydrogenation process, as well as the amination process of cyclohexanone and cyclohexanol to guide the design of catalysts for the one-pot amination of lignin. Then, the catalytic amination systems are deeply analyzed based on their catalytic conditions. Finally, according to the current development status of lignin amination, the challenges and prospects are proposed for a better lignin valorization. This review summarizes the research progress in the one-pot catalytic amination of lignin oxygenated model compounds to cyclohexylamine, specifically from the catalyst nanostructure engineering and catalytic conditional strategy.
ISSN:1463-9262
1463-9270
DOI:10.1039/d2gc01887j