Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission

Intermolecular charge-transfer excitons play a central role in determining the performance of organic solar cells as their voltage-dependent formation, dissociation, and recombination dynamics contribute to photocurrent generation, radiative/nonradiative voltage losses, and photovoltaic fill factor....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-04, Vol.16 (4), p.1742-1751
Hauptverfasser: Burlingame, Quinn C, Liu, Xiao, Ball, Melissa L, Rand, Barry P, Loo, Yueh-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intermolecular charge-transfer excitons play a central role in determining the performance of organic solar cells as their voltage-dependent formation, dissociation, and recombination dynamics contribute to photocurrent generation, radiative/nonradiative voltage losses, and photovoltaic fill factor. Here, we explore the properties of brightly-emitting wide energy gap (>2 eV) charge transfer excitons by measuring the voltage-dependent photoluminescence, photocurrent, and ultrafast pump-probe transient absorption spectra of organic solar cells employing five UV-absorbing donor molecules that differ only by the length of the oligophenylene or acene group at their core. We find that organic solar cells with a strong correlation between their voltage-dependent photocurrent and charge-transfer exciton photoluminescence have low photovoltaic fill factors as they require voltage to facilitate efficient charge-transfer exciton dissociation. In contrast, solar cells that are efficient can readily generate charges without an applied field and have a separate population of tightly-bound charge-transfer excitons that are responsible for emission. Considering that the sum of all excitation loss rates ( i.e. , recombination and charge extraction) must be equal to the excitation generation rate in the steady state, these voltage-dependent data allow us to solve for the voltage-dependent fate of all excitations in the solar cells and estimate upper and lower bounds for geminate and non-geminate recombination, respectively. Voltage-dependent characterizations of organic solar cells with brightly-emitting charge-transfer excitons reveal excitation dynamics and trends as a function of donor molecule.
ISSN:1754-5692
1754-5706
DOI:10.1039/d2ee03548k