Steps towards a nature inspired inorganic crystal engineering

This Perspective outlines the results obtained at the University of Bologna by applying crystal engineering strategies to develop nature inspired organic-inorganic materials to tackle challenges in the health and environment sectors. It is shown by means of a number of examples that co-crystallizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-05, Vol.51 (19), p.739-74
Hauptverfasser: Grepioni, Fabrizia, Casali, Lucia, Fiore, Cecilia, Mazzei, Luca, Sun, Renren, Shemchuk, Oleksii, Braga, Dario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This Perspective outlines the results obtained at the University of Bologna by applying crystal engineering strategies to develop nature inspired organic-inorganic materials to tackle challenges in the health and environment sectors. It is shown by means of a number of examples that co-crystallization of inorganic salts, such as alkali and transition metal halides, with organic compounds, such as amino acids, urea, thiourea and quaternary ammonium salts, can be successfully used for (i) chiral resolution and conglomerate formation from racemic compounds, (ii) inhibition of soil enzyme activity in order to reduce urea decomposition and environmental pollution, and (iii) preparation of novel agents to tackle antimicrobial resistance. All materials described in this Perspective have been obtained by mechanochemical solvent-free or slurry methods and characterized by solid state techniques. The fundamental idea is that a crystal engineering approach based on the choice of intermolecular interactions (coordination and hydrogen bonds) between organic and inorganic compounds allows obtaining materials with collective properties that are different, and often very much superior to those of the separate components. It is also demonstrated that the success of this strategy depends crucially on cross-disciplinary synergistic exchange with expert scientists in the areas of bioinorganics, microbiology, and chirality application-oriented developments of these novel materials. Crystal engineering is used for property modification of organic solids via cocrystallization with inorganic salts, to tackle chiral resolution, enzyme inhibition and antimicrobial resistance in a frame of cross-disciplinary scientific expertise.
ISSN:1477-9226
1477-9234
DOI:10.1039/d2dt00834c