Geometrical picture of the electron-electron correlation at the large- limit

In electronic structure calculations, the correlation energy is defined as the difference between the mean field and the exact solution of the non relativistic Schrödinger equation. Such an error in the different calculations is not directly observable as there is no simple quantum mechanical operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-04, Vol.24 (16), p.9298-937
Hauptverfasser: Ghosh, Kumar J. B, Kais, Sabre, Herschbach, Dudley R
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In electronic structure calculations, the correlation energy is defined as the difference between the mean field and the exact solution of the non relativistic Schrödinger equation. Such an error in the different calculations is not directly observable as there is no simple quantum mechanical operator, apart from correlation functions, that correspond to such quantity. Here, we use the dimensional scaling approach, in which the electrons are localized at the large-dimensional scaled space, to describe a geometric picture of the electronic correlation. Both, the mean field, and the exact solutions at the large- D limit have distinct geometries. Thus, the difference might be used to describe the correlation effect. Moreover, correlations can be also described and quantified by the entanglement between the electrons, which is a strong correlation without a classical analog. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics and bounded by the area law for local gapped Hamiltonians of interacting many-body systems. This study opens up the possibility of presenting a geometrical picture of the electron-electron correlations and might give a bound on the correlation energy. The results at the large- D limit and at D = 3 indicate the feasibility of using the geometrical picture to get a bound on the electron-electron correlations. The correlation energy is bounded by an area law corr ≤ CΔ (area), which is a close resemblance of the area law conjecture of entanglement entropy.
ISSN:1463-9076
1463-9084
DOI:10.1039/d2cp00438k