SmSrFeMO (M = Co, Cu) perovskite oxides for efficient oxygen evolution reaction in alkaline electrolyte

Development of an efficient, earth-abundant, inexpensive, and stable perovskite electrocatalyst to replace RuO 2 catalysts for the oxygen evolution reaction (OER) is much needed for the practical application of electrochemical energy conversion devices. Herein, we report Sm 0.5 Sr 0.5 Fe 0.8 M 0.2 O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2021-09, Vol.5 (19), p.4858-4868
Hauptverfasser: Anand, Pandiyarajan, Wong, Ming-Show, Fu, Yen-Pei
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of an efficient, earth-abundant, inexpensive, and stable perovskite electrocatalyst to replace RuO 2 catalysts for the oxygen evolution reaction (OER) is much needed for the practical application of electrochemical energy conversion devices. Herein, we report Sm 0.5 Sr 0.5 Fe 0.8 M 0.2 O 3− δ (M = Co, Cu) perovskite doped with different transition metals at the B-site as a cheaper OER electrocatalyst in 1 M KOH electrolyte. Among the prepared catalysts, Sm 0.5 Sr 0.5 Fe 0.8 Co 0.2 O 3− δ (SSFCoO) catalysts show improved OER activity with an on-set potential of 1.48 V vs. RHE with a lower overpotential of 316 mV at 10 mA cm −2 . Furthermore, the OER performance correlated with the electronic structure of the electrocatalyst was analyzed through X-ray photoelectron spectra which revealed that the improved OER activity of the SSFCoO catalyst is due to an increased Fe 4+ oxidization state. Strong Fe 3d-O 2p hybridization causes up-shifting of the O 2p valence band close to the Fermi level from 1.0 eV to 0.33 eV, significantly reducing the charge transfer energy and causing faster OH − adsorption and desorption for efficient OER activity. A Sm 0.5 Sr 0.5 Fe 0.8 Co 0.2 O 3 perovskite electrocatalyst for the electrochemical oxygen evolution reaction (OER) in 1 M KOH electrolyte.
ISSN:2398-4902
DOI:10.1039/d1se01054a