NIR-II cell endocytosis-activated fluorescent probes for high-contrast bioimaging diagnostics

Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2021-08, Vol.12 (31), p.1474-1482
Hauptverfasser: He, Yue, Wang, Shangfeng, Yu, Peng, Yan, Kui, Ming, Jiang, Yao, Chenzhi, He, Zuyang, El-Toni, Ahmed Mohamed, Khan, Aslam, Zhu, Xinyan, Sun, Caixia, Lei, Zuhai, Zhang, Fan
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies. A Cell Endocytosis-Activated Fluorescent (CEAF) probe triggered by disaggregation and protonation is designed for high contrast in vivo bioimaging and diagnostics in the second near-infrared window (1000-1700 nm).
ISSN:2041-6520
2041-6539
DOI:10.1039/d1sc02763h