study of natural compounds from sesame against COVID-19 by targeting M, PL and RdRp

Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-06, Vol.11 (36), p.22398-2248
Hauptverfasser: Allam, Ahmed E, Amen, Yhiya, Ashour, Ahmed, Assaf, Hamdy K, Hassan, Heba Ali, Abdel-Rahman, Islam M, Sayed, Ahmed M, Shimizu, Kuniyoshi
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. seeds (sesame) were led to isolation of seven known compounds, five lignan; sesamin 1 , sesamolin 2 , pinoresinol 3 , hydroxymatairesinol 6 , spicatolignan 7 , together with two simple phenolic compounds; ferulic acid 4 and vanillic acid 5 . All isolated compounds were evaluated in silico against three important SARS-CoV-2 protein targets; main protease (M pro ), papain-like protease (PL pro ) and RNA-dependent RNA polymerase (RdRp) which possessed crucial role in replication and proliferation of the virus inside the human cell. The results revealed that compound 6 has the high affinity against the three main proteins, specially towards the SARS-CoV-2 M pro that exceeded the currently used SARS-CoV-2 M pro inhibitor darunavir as well as, exhibiting a similar binding energy at SARS CoV-2 PLpro when compared with the co-crystallized ligand. This activity continued to include the RdRp as it displayed a comparable docking score with remdesivir. Inferiorly, compounds 1 and 2 showed also similar triple inhibitory effect against the three main proteins while compound 7 exhibited a dual inhibitory effect against SARS CoV-2 PL Pro and RdRp. Further molecular dynamic simulation experiments were performed to validate these docking experiments and to calculate their binding free energies (Δ G s). Compounds 1 , 2 , 3 , 6 , and 7 showed comparable binding stability inside the active site of each enzyme with Δ G values ranged from −4.9 to −8.8 kcal mol −1 . All the compounds were investigated for their ADME and drug likeness properties, which showed acceptable ADME properties and obeying Lipinski's rule of five parameters. It can be concluded that the isolated compounds from sesame lignans could be an alternative source for the development of new natural leads against COVID-19. Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads.
ISSN:2046-2069
DOI:10.1039/d1ra03937g