Photo-initiated enhanced antibacterial therapy using a non-covalent functionalized graphene oxide nanoplatform

This study describes a novel antibacterial phototherapeutic platform for highly efficient healing of bacteria-infected wounds. It is based on the photodynamic and physical actions of a zinc tetraaminophthalocyanine-modified graphene oxide nanocomposite produced via non-covalent functionalization. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-06, Vol.5 (24), p.844-8412
Hauptverfasser: Mei, Lin, Shi, Yanmei, Miao, Zhiqiang, Cao, Fengyi, Hu, Kai, Lin, Chunlei, Li, Xiumin, Li, Jing, Gao, Jiagui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes a novel antibacterial phototherapeutic platform for highly efficient healing of bacteria-infected wounds. It is based on the photodynamic and physical actions of a zinc tetraaminophthalocyanine-modified graphene oxide nanocomposite produced via non-covalent functionalization. The nanocomposite is positively charged and can easily capture negatively charged bacteria via electrostatic interactions. The antibacterial action is two-fold: (1) reactive oxygen species are produced by the phthalocyanine photosensitizer after short-term exposure to 680 nm light and (2) the graphene oxide can physically cut bacterial cell membranes. These enhanced activities can kill Gram-positive and Gram-negative bacteria at very low dosages. An ultrastructural examination indicates that this nanocomposite causes enormous damage to bacterial morphology and leakage of intracellular substances that lead to bacterial death. A rat wound model is used to demonstrate that the proposed phototherapeutic platform has low cytotoxicity and can promote rapid healing in bacteria-infected wounds. These results suggest that the integration of different antibacterial methods into a single nanotherapeutic platform is a promising strategy for anti-infective treatment. A non-covalent functionalized graphene oxide nanoplatform can kill bacteria at very low dosages and promote rapid healing of bacteria-infected wounds.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt00642h