Intrinsic-to-extrinsic emission tuning in luminescent Cu nanoclusters by ligand engineering

Enhancement of the emission quantum yield and expansion of the emission tunability spectrum are the key aspects of an emitter, which direct the evolution of future generation light harvesting materials. In this regard, small molecular ligand-protected Cu nanoclusters (SLCuNCs) have emerged as prospe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-11, Vol.23 (45), p.2585-25865
Hauptverfasser: Chatterjee, Joy, Chatterjee, Abhijit, Hazra, Partha
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enhancement of the emission quantum yield and expansion of the emission tunability spectrum are the key aspects of an emitter, which direct the evolution of future generation light harvesting materials. In this regard, small molecular ligand-protected Cu nanoclusters (SLCuNCs) have emerged as prospective candidates. Herein, we report the broadband emission tunability in a SLCuNC system, mediated by in situ ligand replacement. 1,6-Hexanedithiol-protected blue emissive discrete Cu nanoclusters (CuNCs) and red emissive CuNC assemblies have been synthesized in one pot. The red emissive CuNC assemblies were characterized and found to be covalently-linked nanocluster superstructures. The blue emissive CuNC was further converted to a green-yellow emissive CuNC over time by a ligand replacement process, which was mediated by the oxidized form of the reducing agent used for synthesizing the blue emissive nanocluster. Steady-state emission results and fluorescence dynamics studies were used to elucidate that the ligand replacement process not only modulates the emission color but also alters the nature of emission from metal-centered intrinsic to ligand-centered extrinsic emission. Moreover, time-dependent blue to green-yellow emission tunability was demonstrated under optimized reaction conditions. Broadband emission tunability in thiol-protected Cu nanoclusters has been achieved through in situ ligand engineering, where the reducing agent plays a key role.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp03596g