Predicting H NMR relaxation in Gd-aqua using molecular dynamics simulations
Atomistic molecular dynamics simulations are used to predict 1 H NMR T 1 relaxation of water from paramagnetic Gd 3+ ions in solution at 25 °C. Simulations of the T 1 relaxivity dispersion function r 1 computed from the Gd 3+ - 1 H dipole-dipole autocorrelation function agree within 8% of measuremen...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (37), p.2974-2984 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomistic molecular dynamics simulations are used to predict
1
H NMR
T
1
relaxation of water from paramagnetic Gd
3+
ions in solution at 25 °C. Simulations of the
T
1
relaxivity dispersion function
r
1
computed from the Gd
3+
-
1
H dipole-dipole autocorrelation function agree within 8% of measurements in the range
f
0
5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model. Below
f
0
5 MHz, the simulation overestimates
r
1
compared to measurements, which is used to estimate the zero-field electron-spin relaxation time. The simulations show potential for predicting
r
1
at high frequencies in chelated Gd
3+
contrast-agents used for clinical MRI.
MD simulations of
1
H NMR relaxivity
r
1
for Gd
3+
-aqua agree within 8% of measurements above
f
0
5 MHz, without any adjustable parameters or relaxation models. The technique shows potential for simulating
r
1
in chelated Gd
3+
contrast-agents used for clinical MRI. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp03356e |