Predicting H NMR relaxation in Gd-aqua using molecular dynamics simulations

Atomistic molecular dynamics simulations are used to predict 1 H NMR T 1 relaxation of water from paramagnetic Gd 3+ ions in solution at 25 °C. Simulations of the T 1 relaxivity dispersion function r 1 computed from the Gd 3+ - 1 H dipole-dipole autocorrelation function agree within 8% of measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (37), p.2974-2984
Hauptverfasser: Singer, Philip M, Parambathu, Arjun Valiya, Pinheiro dos Santos, Thiago J, Liu, Yunke, Alemany, Lawrence B, Hirasaki, George J, Chapman, Walter G, Asthagiri, Dilip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomistic molecular dynamics simulations are used to predict 1 H NMR T 1 relaxation of water from paramagnetic Gd 3+ ions in solution at 25 °C. Simulations of the T 1 relaxivity dispersion function r 1 computed from the Gd 3+ - 1 H dipole-dipole autocorrelation function agree within 8% of measurements in the range f 0 5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model. Below f 0 5 MHz, the simulation overestimates r 1 compared to measurements, which is used to estimate the zero-field electron-spin relaxation time. The simulations show potential for predicting r 1 at high frequencies in chelated Gd 3+ contrast-agents used for clinical MRI. MD simulations of 1 H NMR relaxivity r 1 for Gd 3+ -aqua agree within 8% of measurements above f 0 5 MHz, without any adjustable parameters or relaxation models. The technique shows potential for simulating r 1 in chelated Gd 3+ contrast-agents used for clinical MRI.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp03356e