Electrochemical sensing of pioglitazone hydrochloride on N-doped r-GO modified commercial electrodes
In this paper, we explain the electrochemical sensing of commercially available pioglitazone hydrochloride (PIOZ) tablets on a nitrogen (N) doped r-GO (Nr-GO) modified commercial glassy carbon electrode (GCE) and a commercial screen printed graphite electrode (SPGE). Nr-GO is synthesized by the chem...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2021-06, Vol.146 (11), p.3578-3588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we explain the electrochemical sensing of commercially available pioglitazone hydrochloride (PIOZ) tablets on a nitrogen (N) doped r-GO (Nr-GO) modified commercial glassy carbon electrode (GCE) and a commercial screen printed graphite electrode (SPGE). Nr-GO is synthesized by the chemical reduction of graphene oxide (GO) and simultaneous insertion of an N-dopant by hydrazine monohydrate. Pristine GO itself is prepared by chemical exfoliation of bulk graphite. Upon chemical reduction, the exfoliated GO sheets restack together leaving behind the doped N-atom as evidenced by XRD and Raman spectroscopy. The N-atom exists in the pyrrolinic and pyridinic form at the edge of graphitic domains which is confirmed by XPS. The as-synthesized Nr-GO is used for the preparation of electro-active electrodes with the help of the GCE and SPGE. These electrodes have the capability to oxidize PIOZ by a diffusion dominated process as evidenced by the impedance spectroscopic technique. The differential pulse voltammetric responses of different concentrations of PIOZ are assessed over the Nr-GO modified GCE and SPGE, which exhibit better limits of detection (LODs) of 67 nM and 29 nM, respectively, compared to those from earlier reports. These assays exhibit non-interfering capability in the presence of various body interferents at pH = 7.0.
Sensing of pioglitazone hydrochloride power over porous Nr-GO modified electrodes. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/d1an00224d |