Liquid-phase electron microscopy imaging of cellular and biomolecular systems

The ongoing development of liquid-phase electron microscopy methods-in which specimens are kept fully solvated in the microscope by encapsulation in transparent, vacuum-tight chambers-is making it possible to investigate a wide variety of nanoscopic dynamic phenomena at the single-particle level, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-09, Vol.8 (37), p.849-856
Hauptverfasser: Smith, John W, Chen, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing development of liquid-phase electron microscopy methods-in which specimens are kept fully solvated in the microscope by encapsulation in transparent, vacuum-tight chambers-is making it possible to investigate a wide variety of nanoscopic dynamic phenomena at the single-particle level, and with nanometer to atomic resolution. As such, there has been growing motivation to make liquid-phase electron microscopy tools applicable not only to inorganic materials, like metals, semiconductors, and ceramics, but also to "soft" materials such as biomolecules and cells, whose nanoscale dynamics and organization are intricately tied to their functionality. Here we review efforts toward making this an experimental reality, summarizing recent liquid-phase electron microscopy studies of whole cells, assembling peptides, and even individual proteins. Successes and challenges are discussed, as well as strategies to maximize the amount of accessible information and minimize the impact of the electron beam. We conclude with an outlook on the potential of liquid-phase electron microscopy to provide new insight into the rich and functional dynamics occurring in biological systems at the microscopic to molecular level. Liquid-phase electron microscopy, a new method for real-time nanoscopic imaging in liquid, makes it possible to study cells or biomolecules with a singular combination of spatial and temporal resolution. We review the state of the art in biological research in this growing and promising field.
ISSN:2050-750X
2050-7518
DOI:10.1039/d0tb01300e