Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers

The development of lightweight and high-efficiency microwave absorption materials has attracted wide attention in the field of electromagnetic wave absorption. Herein, two kinds of petal-like Ni-based MOFs were grown on the surface of graphene nanosheets, and then pyrolyzed to obtain new microwave a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-02, Vol.13 (5), p.3119-3135
Hauptverfasser: Yi, Pengshu, Yao, Zhengjun, Zhou, Jintang, Wei, Bo, Lei, Lei, Tan, Ruiyang, Fan, Huiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of lightweight and high-efficiency microwave absorption materials has attracted wide attention in the field of electromagnetic wave absorption. Herein, two kinds of petal-like Ni-based MOFs were grown on the surface of graphene nanosheets, and then pyrolyzed to obtain new microwave absorbers. The extraordinary microwave absorption performance mainly comes from: the unique petal-like porous carbon framework of MOFs, the 3D conductive network formed by the connection of GNs, the polarization process between the interfaces of multiple heterogeneous components and high impedance matching brought about by magnetic Ni nanoparticles. By adjusting the filling ratio to only 10 wt%, the optimum reflection loss of the prepared composites is up to −53.99 dB, and the effective absorption bandwidth reaches 4.39 GHz when the matching thickness is only 1.4 mm. This work provides not only a facile method for the design and fabrication of two high-efficiency microwave absorbers, but also a reference for the precise control of electromagnetic absorption properties. 3D conductive networks constructed by decorating petal-like Ni-based MOFs on the surface of graphene nanosheets exhibit superior microwave absorption properties.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr07991j