Carboxylic acids as anchoring components on aluminum oxide for the alignment relay technique of single-walled carbon nanotubes

The alignment of semiconducting single-walled carbon nanotubes (SWCNTs) can contribute to faster, lighter, and more efficient transistors, but the process needs optimization for mass production. We have previously described an alignment relay technique (ART) to facilitate the simultaneous orientatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2021-03, Vol.45 (12), p.534-5349
Hauptverfasser: Snowdon, Monika R, Wang, Shirley, Mashmoushi, Nour, Hopkins, Scott W, Schipper, Derek J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alignment of semiconducting single-walled carbon nanotubes (SWCNTs) can contribute to faster, lighter, and more efficient transistors, but the process needs optimization for mass production. We have previously described an alignment relay technique (ART) to facilitate the simultaneous orientation, diameter, and length of SWCNTs when placed on a substrate surface. To expand ART's utility, compatibility with a broad range of surfaces needs to be achieved. Here, we report on the ineffectiveness of ART to work on Al 2 O 3 and we suggest that the molecular tweezer requires a carboxylic acid in order to bind to alumina. We tested the new carboxylic acid moiety with two liquid crystal solvents to improve alignment on silica, as well as on atomic layer deposited alumina and alpha-Al 2 O 3 substrates. We show that the carboxylic acid modification increased the SWCNTs' alignment on the Al 2 O 3 surface by 20% in relation to the first-generation ART molecule. We used quantum chemical calculations to explore nanotube interactions with the iptycene molecular tweezers. Our calculations indicate a significant preference for nanotube orientations in the binding pocket of the iptycene derivative. Our work optimizes the applicability of ART towards the deposition on a variety of substrates for electrical devices. We illustrate using a carboxylic acid anchoring component in the Alignment Relay Technique on silica and alumina surfaces. We present theoretical calculations on the interactions between the iptycenes' various pockets and the carbon nanotubes.
ISSN:1144-0546
1369-9261
DOI:10.1039/d0nj05154c