Boronic acids for functionalisation of commercial multi-layer graphitic material as an alternative to diazonium salts

A novel radical-based functionalisation strategy for the synthesis of functionalised commercially obtained plasma-synthesised multi-layer graphitic material (MLG) is presented herein. 4-(trifluoromethyl)phenyl boronic acid was utilised as a source of 4-(trifluoromethyl)phenyl radicals to covalently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2020-11, Vol.44 (44), p.19144-19154
Hauptverfasser: McLaren, Rachel L, Laycock, Christian J, Morgan, David J, Owen, Gareth R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel radical-based functionalisation strategy for the synthesis of functionalised commercially obtained plasma-synthesised multi-layer graphitic material (MLG) is presented herein. 4-(trifluoromethyl)phenyl boronic acid was utilised as a source of 4-(trifluoromethyl)phenyl radicals to covalently graft upon the graphitic surface of MLG. Such a methodology provides a convenient and safer route towards aryl radical generation, serving as a potential alternative to hazardous diazonium salt precusors. The structure and morphology of the functionalised MLG ( Ar f -MLG) has been characterised using XPS, Raman, TGA, XRD, SEM, TEM and BET techniques. The XPS quantitative data and Raman spectra provide evidence of successful covalent attachment of 4-(trifluoromethyl)phenyl groups to MLG. Commercially obtained plasma-synthesised multi-layer graphene was functionalised with 4-(trifluoromethyl)phenyl groups utilising the corresponding boronic acid providing a safer alternative to diazonium salts.
ISSN:1144-0546
1369-9261
DOI:10.1039/d0nj04187d