Fluorescent biosensor based on magnetic cross-linking enzyme aggregates/CdTe quantum dots for the detection of HO-bioprecursors

The sensing method for hydrogen peroxide could also be employed to detect H 2 O 2 -bioprecursors in the presence of oxidase. However, the sensitivity of the conventional method is limited, and the catalytic stability and recyclability of enzymes also need to be improved. In this study, glucose was c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2020-10, Vol.44 (41), p.17984-17992
Hauptverfasser: Chen, Guoning, Hu, Qianqian, Shu, Hua, Wang, Lu, Cui, Xia, Han, Jili, Bashir, Kamran, Luo, Zhimin, Chang, Chun, Fu, Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sensing method for hydrogen peroxide could also be employed to detect H 2 O 2 -bioprecursors in the presence of oxidase. However, the sensitivity of the conventional method is limited, and the catalytic stability and recyclability of enzymes also need to be improved. In this study, glucose was chosen as a typical representative H 2 O 2 -bioprecursor to design a fluorescence sensing system for H 2 O 2 -bioprecursors based on a magnetic immobilized enzyme and CdTe quantum dots. The magnetic immobilized enzyme was fabricated by a cross-linking method to enhance the stability and recyclability of the enzyme. The obtained product was characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, and vibrating sample magnetometry, respectively. The CdTe quantum dots were prepared by a hydrothermal method, and revealed a maximum emission peak at about 610 nm under the maximum excitation light (339 nm). The developed CdTe QDs exhibited excellent sensing performance for hydrogen peroxide. The prepared immobilized enzyme and quantum dots were used to develop a fluorescence sensing system and were successfully exploited to detect a typical H 2 O 2 -bioprecursor (glucose) in the presence of glucose oxidase. The method exhibited good linear performance in the concentration range of 1-20 μg mL −1 , and good recoveries ranging from 106.2-117.7%. This study demonstrated that the strategy could be extended to detect more H 2 O 2 -bioprecursors. A fluorescent sensing system for H 2 O 2 -bioprecursors based on CdTe quantum dots and magnetic cross-linking enzyme aggregates was designed.
ISSN:1144-0546
1369-9261
DOI:10.1039/d0nj03761c