Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits

Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale horizons 2020-10, Vol.5 (1), p.1378-1385
Hauptverfasser: Andreev, Maksim, Choi, Jae-Woong, Koo, Jiwan, Kim, Hyeongjun, Jung, Sooyoung, Kim, Kwan-Ho, Park, Jin-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1385
container_issue 1
container_start_page 1378
container_title Nanoscale horizons
container_volume 5
creator Andreev, Maksim
Choi, Jae-Woong
Koo, Jiwan
Kim, Hyeongjun
Jung, Sooyoung
Kim, Kwan-Ho
Park, Jin-Hong
description Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power density limits. Here, an ambipolar WSe 2 field-effect transistor with two or more negative-differential-transconductance (NDT) regions in its transfer characteristic (NDTFET) is proposed for MVL applications of various radices. The operation and charge carrier transport mechanism of the NDTFET are studied first by Kelvin probe force microscopy, electrical, and capacitance-voltage measurements. Next, strategies for increasing the number of NDT regions and engineering the NDTFET transfer characteristic are discussed. Finally, the extensibility and tunability of our concept are demonstrated by adapting NDTFETs as core devices for ternary, quaternary, and quinary MVL inverters through simulations, where only WSe 2 is employed as a channel material for all devices comprising the inverters. The MVL inverter operation principle and the mechanism of the multiple logic state formation are analyzed in detail. The proposed concept is practically verified by the fabrication of a ternary inverter. An extensible and tunable concept of WSe 2 -based negative differential transconductance devices for computational multi-valued logic systems of various radices.
doi_str_mv 10.1039/d0nh00163e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0nh00163e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446681504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-4d97cb29c2831709f826c688b43ad93649ef56aca218bf7b5490148d4e3b216c3</originalsourceid><addsrcrecordid>eNp90UFLwzAUAOAgCo65i3eh4kWEatKkaXoUnU4Y86LnkqYvW0bW1iSd-O_NnCh48PQeL997hPcQOiX4mmBa3jS4XWFMOIUDNMpwnqe84OzwJ8_5MZp4v8YRCVKUgo6QXcBSBrOFpDFag4M2GGmT4GTrVdc2gwqyVfEVtiaGdxNWiUx8gL6HJomtu0awoIIzKtGdSzaDDSbdSjtEYLtlLCvj1GCCP0FHWloPk-84Rq8P05e7WTp_fny6u52nijIcUtaUhaqzUmWCkgKXWmRccSFqRmVTUs5K0DmXSmZE1Lqoc1ZiwkTDgNYZ4YqO0eV-bu-6twF8qDbGK7BWttANvspYJhjhPC8ivfhD193g2vi7qBjnguSYRXW1V8p13jvQVe_MRrqPiuBqt_vqHi9mX7ufRny-x86rH_d7m6pvdDRn_xn6CTr_jD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446681504</pqid></control><display><type>article</type><title>Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Andreev, Maksim ; Choi, Jae-Woong ; Koo, Jiwan ; Kim, Hyeongjun ; Jung, Sooyoung ; Kim, Kwan-Ho ; Park, Jin-Hong</creator><creatorcontrib>Andreev, Maksim ; Choi, Jae-Woong ; Koo, Jiwan ; Kim, Hyeongjun ; Jung, Sooyoung ; Kim, Kwan-Ho ; Park, Jin-Hong</creatorcontrib><description>Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power density limits. Here, an ambipolar WSe 2 field-effect transistor with two or more negative-differential-transconductance (NDT) regions in its transfer characteristic (NDTFET) is proposed for MVL applications of various radices. The operation and charge carrier transport mechanism of the NDTFET are studied first by Kelvin probe force microscopy, electrical, and capacitance-voltage measurements. Next, strategies for increasing the number of NDT regions and engineering the NDTFET transfer characteristic are discussed. Finally, the extensibility and tunability of our concept are demonstrated by adapting NDTFETs as core devices for ternary, quaternary, and quinary MVL inverters through simulations, where only WSe 2 is employed as a channel material for all devices comprising the inverters. The MVL inverter operation principle and the mechanism of the multiple logic state formation are analyzed in detail. The proposed concept is practically verified by the fabrication of a ternary inverter. An extensible and tunable concept of WSe 2 -based negative differential transconductance devices for computational multi-valued logic systems of various radices.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d0nh00163e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier transport ; Current carriers ; Electrical measurement ; Field effect transistors ; Integrated circuits ; Inverters ; Logic circuits ; Multivalued logic ; Power consumption ; Power management ; Semiconductor devices ; Transconductance</subject><ispartof>Nanoscale horizons, 2020-10, Vol.5 (1), p.1378-1385</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-4d97cb29c2831709f826c688b43ad93649ef56aca218bf7b5490148d4e3b216c3</citedby><cites>FETCH-LOGICAL-c340t-4d97cb29c2831709f826c688b43ad93649ef56aca218bf7b5490148d4e3b216c3</cites><orcidid>0000-0001-8401-6920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Andreev, Maksim</creatorcontrib><creatorcontrib>Choi, Jae-Woong</creatorcontrib><creatorcontrib>Koo, Jiwan</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Jung, Sooyoung</creatorcontrib><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Park, Jin-Hong</creatorcontrib><title>Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits</title><title>Nanoscale horizons</title><description>Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power density limits. Here, an ambipolar WSe 2 field-effect transistor with two or more negative-differential-transconductance (NDT) regions in its transfer characteristic (NDTFET) is proposed for MVL applications of various radices. The operation and charge carrier transport mechanism of the NDTFET are studied first by Kelvin probe force microscopy, electrical, and capacitance-voltage measurements. Next, strategies for increasing the number of NDT regions and engineering the NDTFET transfer characteristic are discussed. Finally, the extensibility and tunability of our concept are demonstrated by adapting NDTFETs as core devices for ternary, quaternary, and quinary MVL inverters through simulations, where only WSe 2 is employed as a channel material for all devices comprising the inverters. The MVL inverter operation principle and the mechanism of the multiple logic state formation are analyzed in detail. The proposed concept is practically verified by the fabrication of a ternary inverter. An extensible and tunable concept of WSe 2 -based negative differential transconductance devices for computational multi-valued logic systems of various radices.</description><subject>Carrier transport</subject><subject>Current carriers</subject><subject>Electrical measurement</subject><subject>Field effect transistors</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Logic circuits</subject><subject>Multivalued logic</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Semiconductor devices</subject><subject>Transconductance</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UFLwzAUAOAgCo65i3eh4kWEatKkaXoUnU4Y86LnkqYvW0bW1iSd-O_NnCh48PQeL997hPcQOiX4mmBa3jS4XWFMOIUDNMpwnqe84OzwJ8_5MZp4v8YRCVKUgo6QXcBSBrOFpDFag4M2GGmT4GTrVdc2gwqyVfEVtiaGdxNWiUx8gL6HJomtu0awoIIzKtGdSzaDDSbdSjtEYLtlLCvj1GCCP0FHWloPk-84Rq8P05e7WTp_fny6u52nijIcUtaUhaqzUmWCkgKXWmRccSFqRmVTUs5K0DmXSmZE1Lqoc1ZiwkTDgNYZ4YqO0eV-bu-6twF8qDbGK7BWttANvspYJhjhPC8ivfhD193g2vi7qBjnguSYRXW1V8p13jvQVe_MRrqPiuBqt_vqHi9mX7ufRny-x86rH_d7m6pvdDRn_xn6CTr_jD4</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Andreev, Maksim</creator><creator>Choi, Jae-Woong</creator><creator>Koo, Jiwan</creator><creator>Kim, Hyeongjun</creator><creator>Jung, Sooyoung</creator><creator>Kim, Kwan-Ho</creator><creator>Park, Jin-Hong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8401-6920</orcidid></search><sort><creationdate>20201001</creationdate><title>Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits</title><author>Andreev, Maksim ; Choi, Jae-Woong ; Koo, Jiwan ; Kim, Hyeongjun ; Jung, Sooyoung ; Kim, Kwan-Ho ; Park, Jin-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-4d97cb29c2831709f826c688b43ad93649ef56aca218bf7b5490148d4e3b216c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier transport</topic><topic>Current carriers</topic><topic>Electrical measurement</topic><topic>Field effect transistors</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Logic circuits</topic><topic>Multivalued logic</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Semiconductor devices</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, Maksim</creatorcontrib><creatorcontrib>Choi, Jae-Woong</creatorcontrib><creatorcontrib>Koo, Jiwan</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Jung, Sooyoung</creatorcontrib><creatorcontrib>Kim, Kwan-Ho</creatorcontrib><creatorcontrib>Park, Jin-Hong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, Maksim</au><au>Choi, Jae-Woong</au><au>Koo, Jiwan</au><au>Kim, Hyeongjun</au><au>Jung, Sooyoung</au><au>Kim, Kwan-Ho</au><au>Park, Jin-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits</atitle><jtitle>Nanoscale horizons</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><spage>1378</spage><epage>1385</epage><pages>1378-1385</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>Multi-valued logic (MVL) technology is a promising approach for improving the data-handling capabilities and decreasing the power consumption of integrated circuits. This is especially attractive as conventional complementary metal-oxide-semiconductor technology is approaching its scaling and power density limits. Here, an ambipolar WSe 2 field-effect transistor with two or more negative-differential-transconductance (NDT) regions in its transfer characteristic (NDTFET) is proposed for MVL applications of various radices. The operation and charge carrier transport mechanism of the NDTFET are studied first by Kelvin probe force microscopy, electrical, and capacitance-voltage measurements. Next, strategies for increasing the number of NDT regions and engineering the NDTFET transfer characteristic are discussed. Finally, the extensibility and tunability of our concept are demonstrated by adapting NDTFETs as core devices for ternary, quaternary, and quinary MVL inverters through simulations, where only WSe 2 is employed as a channel material for all devices comprising the inverters. The MVL inverter operation principle and the mechanism of the multiple logic state formation are analyzed in detail. The proposed concept is practically verified by the fabrication of a ternary inverter. An extensible and tunable concept of WSe 2 -based negative differential transconductance devices for computational multi-valued logic systems of various radices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nh00163e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8401-6920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2055-6756
ispartof Nanoscale horizons, 2020-10, Vol.5 (1), p.1378-1385
issn 2055-6756
2055-6764
2055-6764
language eng
recordid cdi_rsc_primary_d0nh00163e
source Royal Society Of Chemistry Journals 2008-
subjects Carrier transport
Current carriers
Electrical measurement
Field effect transistors
Integrated circuits
Inverters
Logic circuits
Multivalued logic
Power consumption
Power management
Semiconductor devices
Transconductance
title Negative differential transconductance device with a stepped gate dielectric for multi-valued logic circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20differential%20transconductance%20device%20with%20a%20stepped%20gate%20dielectric%20for%20multi-valued%20logic%20circuits&rft.jtitle=Nanoscale%20horizons&rft.au=Andreev,%20Maksim&rft.date=2020-10-01&rft.volume=5&rft.issue=1&rft.spage=1378&rft.epage=1385&rft.pages=1378-1385&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d0nh00163e&rft_dat=%3Cproquest_rsc_p%3E2446681504%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446681504&rft_id=info:pmid/&rfr_iscdi=true