PET waste as organic linker source for the sustainable preparation of MOF-derived methane dry reforming catalysts

A catalyst made of Ni 0 nanoparticles highly dispersed on a lamellar alumina support was prepared by an environmentally-friendly route. The latter involved the synthesis of an aluminum-containing metal-organic framework (MOF) MIL-53(Al) in which the linkers were derived from the depolymerization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2021-04, Vol.2 (8), p.275-2758
Hauptverfasser: Karam, Leila, Miglio, Arianna, Specchia, Stefania, El Hassan, Nissrine, Massiani, Pascale, Reboul, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A catalyst made of Ni 0 nanoparticles highly dispersed on a lamellar alumina support was prepared by an environmentally-friendly route. The latter involved the synthesis of an aluminum-containing metal-organic framework (MOF) MIL-53(Al) in which the linkers were derived from the depolymerization of polyethylene terephthalate (PET) originating from plastic wastes. After demonstrating the purity and structure integrity of the PET-derived MIL-53(Al), this MOF was impregnated with nickel nitrate salt and then calcined to form a lamellar Ni-Al 2 O 3 mixed metal oxide with a high surface area ( S BET = 1276 m 2 g −1 , N 2 sorption). This mixed oxide consisted of nickel aluminate nanodomains dispersed within amorphous alumina, as revealed by PXRD and TPR analyses. Subsequent reduction under H 2 resulted in the formation of well-dispersed 5 nm Ni 0 nanoparticles homogeneously occluded within the interlamellar porosity of the γ-alumina matrix, as attested by electron microscopy. This waste-derived catalyst displayed catalytic performances in the reaction of dry reforming of methane (DRM) as good as its counterpart made from a MOF obtained from commercial benzene-1,4-dicarboxylic acid (BDC). Thus, under similar steady state conditions, at 650 °C and 1 bar, the PET-derived catalyst led to CH 4 and CO 2 conversions as high as those on the BDC-derived catalyst, and its catalytic stability and selectivity towards DRM were excellent as well (no loss of activity after 13 h and H 2  : CO products ratio remaining at 1). Moreover, both catalysts were much better than those of a reference nickel alumina catalyst prepared by conventional impregnation route. This work therefore demonstrates the possibility of using plastic wastes instead of commercial chemicals to prepare efficient porous nickel-alumina DRM catalysts from MOFs, fostering the concept of circular economy. An active and stable catalyst for dry reforming of methane composed of Ni 0 nanoparticles highly dispersed on a lamellar alumina was prepared by employing a sacrificial metal-organic framework derived from PET wastes.
ISSN:2633-5409
2633-5409
DOI:10.1039/d0ma00984a