Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated graphene

In this work, combining first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration from the Pt catalyst to carbon bridge, and further migration to the graphene surface. The calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-01, Vol.23 (3), p.2384-2391
Hauptverfasser: Guo, Jing-Hua, Liu, Jin-Xiang, Wang, Hong-Bo, Liu, Hai-Ying, Chen, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, combining first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration from the Pt catalyst to carbon bridge, and further migration to the graphene surface. The calculated reaction diagrams show that the hydrogen atoms can easily migrate from the Pt cluster to the carbon bridge with a low barrier of 0.22-0.86 eV, and KMC simulations indicate that the migration reactions can take place at intermediate temperatures (91.9-329.5 K). Our research clarified the role of the carbon bridge: (1) the close combination of Pt clusters and carbon bridges reduces H 2 adsorption enthalpy, which facilitates the spillover of H atoms from the Pt cluster to the carbon bridges and (2) the unsaturated carbon atoms on the carbon bridges have radical character and tend to bind radical H atoms. The subsequent study shows that the F atoms decorated on graphene can greatly reduce the migration barrier of H atoms from the carbon bridge to graphene. With F atoms decorated, the carbon atoms are in an electron-deficient state, which have a strong ability to bind the hydrogen atoms, and it promotes the migration of H atoms to the graphene surface. The migration barrier and reaction temperature are reduced to 0.72 eV and 279 K, respectively. A hydrogen spillover reaction channel from Pt/C catalyst to the graphene surface that can occur at moderate temperature.
ISSN:1463-9076
1463-9084
DOI:10.1039/d0cp05584k